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Abstract: Molecular dynamics simulation of binary mixtures of hard spheres with large size ratio is 
reported. Radial distribution functions, their contact values and the compressibility factors are recorded 
at three state points. A reasonably good agreement with theory and Monte Carlo simulations is shown. 

1. INTRODUCTION 

Computer simulations of hard sphere mixtures can significantly help in understanding the 

physical properties of a variety of molecular systems, such as, for example, colloidal suspen-

sions. Hard-sphere systems were the first molecular models investigated by computer 

simulations, starting with the classical Metropolis Monte Carlo (MC) study [1] of 32 hard 

spheres placed in a cubic box with the standard periodic boundary conditions. Molecular 

dynamics (MD) simulations followed, resulting in new and sometimes quite unexpected 

results. For example, one of the first interesting findings obtained from hard-sphere simula-

tions was the well-defined freezing transition demonstrated in 1959 by Alder and Wainwright 

[2], and Wood and Jacobson [3]. At that time it was believed that only the attractive forces can 

drive a freezing transition in simple fluids. The results were debatable for a long time. and 

currently it is accepted that identical hard spheres systems have a fluid-solid transition. The 

freezing transition can be accounted for by entropy considerations, i.e., the entropy of 

crystalline phase is higher than entropy of fluid phase at sufficiently high densities [4]. 

The binary hard-sphere mixture serves as a model for mixtures of colloids and polymers, 

or other colloidal systems. This binary fluid mixture of large and small hard spheres is not 

miscible for all size ratios and compositions as discussed in a review paper by Dijkstra et al. 

[4]. The full phase diagram of this fluid is still debated. (The general mechanism of phase 

separation in hard-body systems, known as entropic phase separation, is discussed in detail in 

references [5-7]). If the system, however, does not phase-separate then it can be considered as 

a model for stable colloidal suspension, with the large hard spheres being the colloid particles, 

and the small spheres being the solvent molecules. For colloidal suspensions the typical size 

ratio, R = d11/d22, is much bigger than unity, where d22 is the diameter of the smaller hard 

sphere, and d11 is the diameter of the larger hard sphere. To simulate colloidal suspension 
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the Brownian Dynamics (BD) method is often used. In this type of simulation only the larger 

molecules are considered explicitly, and the presence of the solvent is introduced via an ef-

fective background which gives rise to friction and thermal noise. The drawback of the 

Brownian Dynamics is the fact that the hydrodynamic interactions are not taken into account. 

Sometimes the hydrodynamic interactions are approximated by using the Onseen tensor, but 

this is based on analytical approximations which are difficult to control. 

Phase behavior of the simple fluid is similar to the phase behavior of a colloidal sus-

pension. Similarly, the static and dynamics properties of colloidal suspension are similar to 

those of the of simple fluid. However, the diffusivities and relaxation times for fluid molecules 

are about 109 larger than relaxation times of molecules in suspensions. Therefore, lifetime of 

the metastable phase of suspension observed before crystallization, can be long enough (from 

seconds to hours) to allow experimental studies. This long time gives possibility to accurately 

measure physical properties in this state [8]. Colloidal suspension can also be studied by many 

experimental methods such as rheological experiments (viscosity and elastic properties) [8], 

light scattering (structural properties and diffusion coefficients) [9] and nuclear magnetic 

resonance. 

In this work, we perform the MD simulation of binary hard spheres mixture with a large 

size ratio. Hydrodynamic interactions between larger spheres (mediated by small spheres) are 

taken into account explicitly in this model, and no approximation, such as the Onseen tensor, 

are used. The goal of this paper is to perform a preliminary molecular dynamics study of 

binary mixtures of hard spheres in order to calculate the compressibility factors, Z, from the 

radial distribution functions and to compare the results of this calculation to the results of the 

corresponding Monte Carlo simulations [10] and theoretical predictions. In particular, we com-

pare our results with the results of Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) 

theory [11, 12], the results of Henderson-Chan (HC) theory [13, 14], the results of 

Percus-Yevick (SYH) theory [15], the results of Matyushov-Ladanyi (ML) theory [16], and 

results of the MC simulation [10]. 

The following preliminary MD study serves merely as an introduction to a future work 

which is intended to focus on dynamical properties of colloidal suspensions, such as diffusion, 

and which is to be carried out with an optimized parallel MD code. 

2. MODEL AND SIMULATION METHOD 

In this paper we simulate a binary hard sphere mixture, i.e., a system consisting of many 

small spheres (of type 2) surrounding a few large spheres (of type 1) as shown in Fig. 1. This 

system is characterized by volume fractions x1 and x2, defined as follows 

(1) 



Radial Distribution Functions and Compressibility Factors for Binary Mixture 163 

The MD simulation of the binary mixture of hard spheres is performed by the standard 

algorithm [17, 18], i.e., the molecules move freely between collisions, and most of the effort is 

directed towards predicting and executing collisions. The small spheres are initially placed on 

a 3D cubic lattice in order to enable dense packing fractions. The large spheres, on the other 

hand, assume random initial positions. The velocities for the spheres are draw from a uniform 

angular distribution. Once the initial conditions are set, and the cubic periodic boundary 

conditions imposed, the system can follow its trajectory with the precision of the computer 

hardware (20 Intel-based-processor cluster). The MD time step is defined as a time interval 

between successive collisions. The simulation is run for 100 × 106 MD time steps for each 

where Ntotal is the total number of spheres, and is the number of spheres of type i (i = 1 for 

large spheres, and i = 2 for small spheres). The number density is defined as 

(2) 

(3) 

(4) 

where V is volume, and the reduced density can be expressed as 

Finally the size ratio R is 

where d11 is the diameter of a large sphere, and d22 is the diameter of a small sphere. 

Fig. 1. A snapshot of typical configura-
tion of binary hard sphere mixture (R = 5; 
N = 9637; ρ* = 0.6; x2 = 0.00311) 
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3. RESULTS AND DISCUSSION 

The simulation is carried out for three state points at the following conditions (the same as 

in Ref. [10]): 

A) R = 5; 1 = 9637; ρ* = 0.6; x2 = 0.00311. 

B) R = 5; 8000; ρ* = 0.6; x2= 0.005. 

C) R = 5; 1= 6803; ρ* = 0.658; x2= 0.00588. 

For every state point we calculate contact values of the radial distribution functions 

(g1 1(d1 1), g 1 2(d1 2), g22(d22)) and the corresponding compressibility factors (pressures) which are 

compared to results from other sources [10]. All results and comparisons are summarized in 

Figs. 2, 3 and 4, and Tabs. 1, 2, and 3. The results from simulations and theory are presented 

in Tabs. 1, 2, and 3, where we use the following labels: 

HS - results from Molecular Dynamics obtained from our simulation, 

MC - results from Monte Carlo simulation [10], 

BMCSL - results from Boublik-Mansoori-Carnahan-Starling-Leland theory [11, 12], 

HC - results from Henderson-Chan theory [13, 14], 

SYH - results from Percus-Yevick theory, 

ML - results from Matyushov-Ladanyi theory [16]. 

state point considered. Velocities and positions are recorded every 1 × 106 steps. The system is 

equilibrated for 50 × 106 steps, and then the properties of interest are calculated from 

the equilibrated configurations. We calculate the radial distribution functions (rdf) using 

the standard method [19], and report the radial distribution functions, gij(r), where i = 1 or 2, 

with 1 and 2 corresponding to the large and small spheres, respectively. The diameter of the 

small sphere, d22 is chosen as a length unit, and we also define d12 as d12 = (d11 + d22)/2. 

The compressibility factor, Z, is defined as 

(5) 

(6) 

(7) 

or in more detail as 

where P is the pressure of the system, T is temperature, and kB is the Boltzmann constant. For 

hard-sphere binary system, the compressibility factor depends only on the reduced density and 

composition (does not depend on temperature), and can be expressed in terms of the contact 

values of the radial distribution functions, gij(dij) as 
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Fig. 2. Radial distribution functions for the 
first system (A); from top to bottom: g11(r), 
g12(r), and g22(r) 

Fig. 3. Radial distribution functions for the 
second system (B); from top to bottom: g11(r), 

g12(r), and g22(r) 

Fig. 4. Radial distribution functions for the 
third system (C); from top to bottom: g11(r), 

g12(r), and g22(r) 
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Table 1. Contact values for the radial distribution functions and the compressibility factor for the first 
system (A) 

In Figs. 2, 3 and 4 we report the radial distribution functions from which we can extract 

their contact values at the state points considered. Comparison our data with the other results 

shows that they do not differ significantly, e.g. the difference for the compressibility factor is 

less than 3%. 

Table 3. Contact values for the radial distribution functions and the compressibility factor the third 
system (C) 

Table 2. Contact values for the radial distribution functions and the compressibility factor for the second 
system (B) 
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4. CONCLUSION 

Molecular dynamics simulations of binary hard-sphere mixtures are in a reasonably good 

agreement with theory and Monte Carlo simulations. This simulation verifies the C/C++ source 

code developed for this research project. This MD study is an introduction to a future work 

which is intended to focus on studies of dynamical properties of colloidal suspensions, such as 

diffusion, and which are to carried out with an optimized parallel MD code. 
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