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Abstract: Properties of some chaotic fractal models constructed on hierarchies of rectangular cells (the 
latter being rectangular subsets of the square lattice) are investigated. Fractal dimensionalities and 

1. I N T R O D U C T I O N 

It is generally accepted that various physical systems can be thought of as fractals [1-6]. 

The examples are aggregates of particles in colloids, polymer molecules, percolating clusters, 

structures of some binary mixtures and polymers, etc. [1-16]. Thus, studies of model fractal 

structures can be helpful in modelling and understanding various properties of real systems. 

Such models can be also useful in constructing and testing various theoretical approximations. 

Exactly solvable models play an important role in this context as the results obtained for such 

models are free of, often uncontrolled, approximation errors. 

Exactly solvable fractal structures can be obtained, e.g., on hierarchical lattices generated 

by finite subsets (further referred to as the generating cells) of simple periodic lattices. As an 

example, one can mention hierarchical lattices generated by finite square cells of a square 

lattice. Such systems have been considered in the literature, e.g. in [17] and [3], in the context 

of the percolation problem on the square lattice. Those classical studies, which concentrated 

on the 'isotropic' (square) cells of the square lattice, can be generalised to anisotropic 

(rectangular) generating cells. In the present paper we consider the percolation problem on 

hierarchical lattices generated by small, rectangular cells of the two-dimensional square lattice 

which are shown in Fig. 1. The aim of the study is to investigate the influence of the shape 

* Dedicated to the memory of Professor Jacek Rychlewski 

average neighbour numbers of structures generated by small rectangular cells 

well as for the percolation cluster density are calculated for the models considered. The calculations 
show that structures generated by anisotropic (rectangular) initial cells show much broader range of 
critical indices and other characteristic parameters than structures generated by 'isotropic' (square) initial 
cells. 

are derived. Generating probability functions and critical indices for the correlation length as 

mailto:novikov@te.net.ua
mailto:kww@man.poznan.pl
user
Tekst maszynowy
CMST 10(1) 91-100 (2004)

user
Tekst maszynowy
DOI:10.12921/cmst.2004.10.01.91-100

user
Tekst maszynowy

user
Tekst maszynowy



92 V.V.Novikov et al. 

Fig. 1. The initial cells considered in this paper. 
Each bond marked by a thin line can be a 
connecting one with the probability p or not 
connecting one with the probability (1 - p). The 
sides of the cells marked by thick lines are 
assumed to be always connecting 

anisotropy of the generating cells on the average coordination number and critical properties 

of the model. 

2. FRACTALS GENERATED BY SQUARE CELLS 

Let us first consider fractal ensembles generated by square cells in which all bonds are 

identically coloured, i.e. the growth of the considered fractals is initiated on the two-

dimensional finite-size lattice L0 × L0. At the n-th stage, each bond of this lattice is replaced 

by a lattice generated at the preceding (n - 1)-st stage. (The first step of the growth process for 

L0 = 2 is illustrated in Fig. 2.) The linear scale of the system at the n-th step is given by 

Ln = Ln
0. The fractal dimensionality, d0

f (L0) , of the principal ensemble Ω0(L0) (with all 

bonds of the same colour) generated by the square cell (Lx = Ly = L0) can be determined from 

the relationship between its mass (i.e. the number of bonds which can be coloured; such bonds 

are represented by thin lines in Figs. 2, 3) and Ln [18] 

Taking into consideration the validity of the following condition for square lattices: 

(1) 

(2) 

one obtains 

As follows from Eq. (2), fractals of dimensionalities can be obtained by 

changing the size L0 of the generating (initial) square cell. For example, 

while 

for L0 = 2 , 
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Fig. 2. The idea of building a self-similar lattice 
(on which the percolation is studied) by an iterative 
growth process of a square generating cell. At each 
stage of the growth process each thin bond of the 
generating cell is replaced by a structure obtained 
at the previous stage. The sides marked by thick 
lines are assumed to be always connecting 

Consider now another ensemble of structures, Ω0(L0, p0), which bonds can be coloured in 

black and white with p0 as the probability for a bond to be black. In this case, one may 

distinguish between two basic states, in which the black bonds form either the bonded 

ensemble (BE) spanning the entire lattice space between two opposite faces, or the non-

bonded ensemble (NBE) with no trajectory available to connect two opposite lattice faces. 

The mass of the BE of black bonds in the vicinity of the critical point of transition 

whereas its density may be defined as 

(3) 

(4) 

The correlation length ξ of the BE is confined to the range of intermediate asymptotic, 

which may be defined as 

(5) 

scale with distance from the critical point (i.e., percolation threshold p*) as 

means that the limit is taken) should 

In this range, the BE is a fractal, i.e. it is geometrically similar to a percolating cluster, and its 

properties depend on the linear scale. Therefore, both the correlation length ξ and the 

NBE BE depends on the linear scale Ln , 

of the BE (the upper index 
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(6) 

where _ Using (5) and (6) one can obtain the dependence of on the 

linear size of the system 

when 

Here, the critical indices for the BE correlation length and density are related through 

the fractal dimensionality df(L0) and β(L0), v(L0) as 

An important characteristic of the chaotic fractal ensemble Ω0 (L0, p0) is the probability 

that a given configuration belongs to the BE (i.e., the percolation probability). At the 0-th (i.e., 

initial) stage, this probability depends on the initial density of black bonds p0 and on the size 

L0 of the generating cell, and may be defined as the ratio of the number of bonding 

configurations to the total number of possible configurations. At the first growth step the 

length of the lattice rib is L1 = L0

2, the density of black bonds is p1 = R(L0, p0) . In the next 

steps Ln = L0 Ln-1 and the probability of a bond to belong to the BE will depend on p0, as 

follows, 

The unstable critical point may be determined from the equality 

(7) 

In any practical (finite precision) calculations the growth trajectory of the chaotic fractal 

ensemble Ωf (L0, p0) ends at the n-th growth step (level) reaching a point indistinguishable 

from one of the fixed points 0 or 1 of the function R(L0, p) for the precision used. 

The probability that a bond belongs to the BE at the n-th growth step, is 

calculated as 
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Fig. 3. The idea of building a self-similar 
lattice (on which the percolation is studied) 
by an iterative growth process of a 
rectangular generating cell; meaning of the 
thin and thick lines is as in the Fig. 2 

(8) 

(9) 

Equation (8) shows that a full (conducting) bond belongs to the "infinite" cluster only 

when it belongs to a cluster connecting the two opposite sides of the lattice on each iteration 

step i - 1, ..., n. It follows from Eqs. (7) and (8) that 

Thus, knowledge of the function R(L0, p) is crucial for determining the properties of the fractal 

model. For small initial lattices this function can be calculated exactly. The exact results for 

square generating cells of L0 = 2, 3, 4, as well for more general case of rectangular generating 

cells, are given in the Appendix. 

3. FRACTALS GENERATED BY RECTANGULAR CELLS 

Consider now the fractal ensembles grown on rectangular subsets of the square lattice, 

tic length of the system, L0, can be chosen in various ways. For Lx > 1 (the case Lx-1 is not 

considered as a trivial one) the simplest and most natural choice is L0 = Lx. As it can be seen in 

Fig. 3, for such a choice each iteration step increases the length of the system by the factor L0. 

Thus, it is natural to choose Ln = Ln
0 as the characteristic length of the system at the n-th step. 

further referred to as rectangular generating cells. In this case the characteris-
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(11) 

(12) 

Closing these calculations, we should notice that, according to the construction procedure, 

see Fig. 3, the considered lattices are inhomogeneous, i.e. the coordination number, Z, for 

Table 1. The percolation threshold,p*, fractal dimensionality of the ensemble at p = 1, d0

f (L x, Ly), 
mean fractal dimensionality at p = p, < dfx >, and critical indices β = β(Lx, Ly), α1 and v = v(Lx, Ly) for 
various initial rectangular cells. The index α1 is calculated from (12) 

i.e. α1 = β(Lx, Ly)/v(Lx, Ly). The results presented in Table 1 were obtained in the limit 

= d0

f (Lx , Ly) - β ( L x , L y ) / v(Lx , L y ) . 

At the n-th growth step, the mass of the obtained 'fractal' ensemble will be 

(10) 

so that using (1) one obtains the fractal dimensionality d0

f (L x, Ly) of the system as 

One can easily check that where the limits are reached for 

(this gives d0

f (L x , Lv) = 1) and (this gives 

Probability functions R (Lx, Ly, p) for fractal ensembles grown on several lattices (of 

the generating cells Lx × Ly where are presented in the Appendix, 

while calculated values of the percolation threshold p*, fractal dimensionality of the 

ensemble at p - 1, d0
f (L x , Ly), mean fractal dimensionality at p = p*, <d f >, and critical 

indices β(Lx, Ly) and v(Lx, Ly) are listed in Table 1. The index α1 in this table is calculated 

from the relation 

and 
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the investigated lattices depends on the lattice coordinates. Introducing the average coordina-

tion number 

< Z > = 2 (total number of bonds)/(total number of sites) 

and taking into account that the considered lattices are self-similar, the average coordination 

number can be expressed by the length of the sides of the generating cell as 

In Table 2 we present results obtained for the average coordination number <Z> and for 

the average number of full bonds around a lattice site at the percolation threshold (i.e. 

the product of <Z> and p at the critical point) for the considered lattices. It can be seen 

there that for the inhomogeneous lattices considered this product can be much different from 

the value 2 which has been obtained for infinite uniform square lattice [3]. 

4. SUMMARY AND CONCLUSIONS 

Chaotic fractal models generated by small rectangular cells were considered. Fractal 

dimensionalities of structures generated by various initial cells (2×1 , 2 × 2 , 2 × 3 , 2 × 4 , 

3 × 1 , 3 × 2 , 3 × 3 , 3 × 4 , 4 × 1 , 4 × 2 , 4 × 3 , 4 × 4 ) and their average neighbour numbers were 

calculated. Probability functions and critical indices for the correlation length and percolation 

cluster density were also derived. 

Table 2. The average coordination number, <Z>, and the average number of full bonds around a lattice 
vertex, p* <Z> calculated for various initial rectangular cells at the percolation threshold, p* 

It follows from (12) that for rectangular generating cells the average coordination number 

can vary in the range 3 

obtained for square generating cells (Lx = Ly), for which 

6. This range is by the factor 9/2 broader than the range 

(12) 
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It has been shown that application of anisotropic (rectangular) initial cells in place of 

'isotropic ' (square) cells substantially increases the range of possible values of critical indices 

and other parameters characterising the models considered. 

These results are of interest in the context of modelling of various properties of in-

homogeneous media by the blob model discussed in [19-22]. In future works we plan to study 

effective conductivity and effective elasticity of fractal structures generated by various 

anisotropic cells. In particular, it is interesting if any auxetic [23] hierarchical structure (i.e. 

showing negative Poisson ratio, for a recent review see [24]) can be obtained on the basis of 

anisotropic generating cells. 
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APPENDIX 

The functions R(LX ,Ly,p) derived for various generating cells are presented below. 

Unit cell 2 x 1 : 

R(l, 2,p) = 2p2(1 -p)3 + 8p3(1 -pf + 5 / ( 1 -p) +p5; 

Unit cell 2 x 2 : 

R(2,p) = R(2, 2,p) = 3 / ( 1 -pf + 2 2 / ( 1 -p)5 + 56p4(1 -p)4 + 5 4 / ( 1 -p)3 + 

28p6(1 -p)2 + 8p1 (1 -p) + p8; 

Unit cell 2 x 3 : 

R(2, 3,p) = 4 / ( 1 - p ) 9 + 4 2 / ( 1 - p ) 8 + 178/ (1 -pf + 

382p5(1 -p)6 + 4 4 2 / ( 1 - p ) 5 + 328 / (1 -p)4 + 

165 / (1 - p ) 3 + 5 5 / ( 1 -p)2 + 11/ 0 (1 -p) + / 1 ; 

Unit cell 2 x 4 : 

R(2, 4,_p) = 5p2(1 -p)12 + 68p3(1 -p)11 + 398 / (1 -p)10 + 

1298p5(1 - p ) 9 + 2575 / (1 -p)8 + 3288/ (1 -p)1 + 

2977 / (1 - p ) 6 + 2000 / (1 - p ) 5 + 1001p10(1 - p ) 4 + 

364p11(1 -p)3 + 9 1 / 2 ( 1 -p)2 + 14p13(1 -p + / 4 ; 

Unit cell 3 x 1 : 

R(3, 1,p) = 2p3(1 -p)5 + 1 4 / ( 1 -p)4 + 34p5(1 - p ) 3 + 2 5 / ( 1 -p)2 + 8 / ( 1 -p) + p8; 

Unit cell 3 x 2 : 

R(3, 2,p) = 3 / ( 1 -p)10 + 38p4(1 - p ) 9 + 2 0 9 / ( 1 -p)8 + 

627 / (1 - p ) 1 + 1089/(1 -p)6 + 1078p8(1 -p)5 + 

677 / (1 - p 4 + 283/°(1 -p)3 + 78p11(1 - p ) 2 + 13/ 2 (1 -p) + p13; 

Unit cell 3 x 3 : 

R(3,p) = R(3, 3,p) = 4p3(1 -p)1 + 7 2 / ( 1 -p)14 + 594p5(1 -p)l3+ 

2936/ (1 - p ) 1 2 + 9582/ (1 -p ) 1 1 + 21470/(1 - p ) 1 0 + 

33494/(1 -pf + 36774p10(1 - p ) 8 + 2 9 6 4 2 / ^ 1 -pf + 

18119p12(1 -p)6 + 8514p13(1 - p ) 5 + 3057/ 4 (1 -p)4 + 

816p15(1 - p ) 3 + 153/ 6 (1 -pf + 18p11(1 -p) + / 8 ; 

Unit cell 3 x 4 : 

R(3, 4,_p) = 5 / ( 1 - p ) 2 0 + 116p4(1 - p ) 1 9 + 1264/(1 -p ) 1 8 + 

8544/ (1 -pf11 + 39915/(1 -p ) 1 6 + 135919p8(1 - p ) 1 5 + 

346869/(1 - p ) 1 4 + 672995/0(1 - p ) 1 3 + 

1001865p11(1 -p ) 1 2 + 1158842/2(1 -p ) 1 1 + 

1064880/3(1 - p ) 1 0 + 793300/4(1 -p)9 + 
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485136p ls(l -p)8 + 244390/6(1 -p)1 + 100877pn(1 -p)6 + 

33646/8(1 - p ) 5 + 8855/9(1 -p)4 + 177l /° (1 - p ) 3 + 

253p21(1 -pf + 23 / 2 (1 -p) +p23; 

Unit cell 4 x 1 : 

5(4, 1,p) = 2p4(1 - p ) + 2 0 / ( 1 -p)6 + 8 0 / ( 1 -p)5 + 

152/ (1 - p 4 + 123/ (1 -p)3 + 5 l / ( 1 -p)2 + 1 l / ° ( 1 - p ) + / 1 ; 

Unit cell 4 x 2 : 

5(4, 2,p) = 3 / ( 1 -p ) 1 4 + 5 4 / ( 1 -p ) 1 3 + 445 / (1 -p ) 1 2 + 

2182/ (1 -p)11 + 6984/(1 -.p)1° + 15126p9(1 -p)9 + 

22288p1°(1 -p)8 + 22242p11(1 - p ) 1 + 15628p12(1 -p)6 + 

7974/ 3(1 -p)5 + 2988/ 4(1 - p 4 + 812p15(1 -p)3 + 

153/6(1 -.p)2 + 18p11(1 -p) + / 8 ; 

Unit cell 4 x 3 : 

5(4, 3,p) = 4 / ( 1 -p ) 2 1 + 102p5(1 -p ) 2 ° + 1230p6(1 -p ) 1 9 + 

9272/(1 -p ) 1 8 + 48718ps(1 - p ) 1 1 + 188512/(1 -p ) 1 6 + 

553496/°(1 - p ) 1 5 + 1252416p11(1 - p ) 1 4 + 

2198498/2(1 -p ) 1 3 + 3001802/3(1 -p ) 1 2 + 

3204984p14(1 -p)11 + 2715264/5(1 -.p)1° + 

1854463/6(1 - p ) 9 + 1032857/^1 -p)8 + 

471428p18(1 - p ) 1 + 175870p19(1 -p)6 + 53028/°(1 -p)5 + 

12646p21(1 - p 4 + 2300/ 2(1 -p)3 + 300/ 3 (1 - p ) 2 + 

25 / 4 (1 -p) + p25; 

Unit cell 4 x 4 : 

5(4,.p) = 5(4, 4,.p) = 5 / ( 1 - p ) 2 8 + 164/(1 -p)21 + 2582p6(1 -p ) 2 6 + 

25910/(1 -p)25 + 185667p8(1 -p)24 +1009026/(1 -p ) 2 3 + 

4311522p1°(1 -p)22 + 14818844p11(1 -p ) 2 1 + 

41566143/2(1 - p f ° + 95995718p13(1 -p ) 1 9 + 

183464428/4(1 -p)18 +291036648/5(1 -p)11 + 

384352578(1 -p ) 1 6 + 424714914/^1 - p ) 1 5 + 

395869210/8(1 -p ) 1 4 + 314074078/9(1 -p ) 1 3 + 

213777310p2°(1 -p)12 + 125503512p21(1 -p ) 1 1 + 

63685924/2(1 -.p)1° + 27896896/3(1 -p)9 + 

10497184/4(1 -p)8 + 3363764/5(1 - p ) 1 + 

906060/6(1 -p)6 + 201372p21(1 - p ) 5 + 35960/8(1 -p)4 + 

4960/ 9(1 -p)3 + 496/°(1 - p ) 2 + 32p31(1 -p) + p32 . 




