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Abstract: The paper presents one-, two- and three-stage implicit interval methods of Runge-
Kutta type for solving the initial value problem. In our previous papers [1] and [2] it was 
shown that the exact solution belongs to the interval-solution obtained by both kinds of these 
methods. We continue the problem on the minimization of the widths of interval-solutions. 

1. INTRODUCTION 

Interval methods for solving the initial value problem in floating-point interval arithmetic 
give solutions in the form of intervals which contain all possible numerical errors (see [3] or 
[4]). The estimations of diameters of interval-solutions are possible on account of (see [5]): 
• the minimization (with respect to the coefficients) of the interval extension of the principal 

part of the approximation error (see e.g. [6]), 
• the minimization of some constants which occur in the estimation of interval-solutions 

(see [1] and [2]) 
• the coefficients of the particular methods which have exact representations in the computer. 

In this paper we consider the last of these cases for one-, two- and three-stage implicit 
interval methods of Runge-Kutta type. 

The paper is organized as follows. Section 2 contains the implicit classical methods of 
Runge-Kutta type for solving the initial value problem. In Section 3 the implicit interval 
Runge-Kutta methods are given. Section 4 deals with all possible forms of numbers which are 
exactly represented in floating-point arithmetic. In Section 5 some approximations of 
the widths of interval-solutions are discussed. Section 6 concludes the paper. 

2. THE INITIAL V A L U E PROBLEM 

AND CLASSICAL RUNGE-KUTTA METHODS 

The initial value problem consists in finding the function y = y(t), such that 

(1) 

subject to an initial condition 
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(7) 

This error is equal to the difference between the exact value y(tk + h) and its approximation 

evaluated on the basis of the exact value y(tk+1). The function ψ(t, y(t)) depends on 

coefficients wi, ci, aij and on partial derivatives of the function f (t, y) in (l)-(2). The form of 

where 

(6) 

(5) 

The set of constant numbers wi, ci, aij characterize a particular method (these coefficients 

depend on the number of stages m and on the order p of the method). 

The local truncation error of step tk+1 = tk + h for a Runge-Kutta method of order p can 

be written in the form (see e.g. [6] or [7]) 

and 

where 

(4) 

(3) 

To carry out a single step by an m-stage Runge-Kutta method it is necessary to use 

the formula (see e.g.[7]) 

where We will assume that the solution of 

(2) 

(l)-(2) exists and is unique (see e.g. [6]). 

From the theory of the ordinary differential equations it is known that it takes place if 

the function f satisfies the Lipschitz condition, i.e. f is determined and continuous in the set 

and there exists a constant L > 0 such that for each 

and all u, v we have 
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ψ(t, y(t)) is very complicated and cannot be written in general form for an arbitrary order p 

(see e. g. [4], [6] or [7]). 

where 

(9) 

implicit interval methods with a higher number of stages and with an order higher than four 

M = [M1, M 2 , . . . , M N ] T is given by (7), and for m = 1,2,3 . In our opinion the 

i = 1, 2, ... m, 

(8) 

defined by the following formulas: 

3. IMPLICIT I N T E R V A L METHODS OF RUNGE-KUTTA TYPE 

Let us denote: 

Δt and Δy - sets in which the function f (t, y) is defined,i.e. 

F(T, Y) - an interval extension of f(t, y) (for a definition of interval extension see e.g. 

[ l] or [8]), 

Ψ(T, Y) - an interval extension of ψ(t, y) (staying in (6)). 

Let us assume that: 

• the function F(T, Y) is defined and continues for all and 

• the function F(T, Y) is monotone with respect to inclusion, i. e. 

• if d(A) denote the width of the interval then that 

if A = [A1, A 2 , . . . , AN]T, then d(A) = d(A s ) , 

• the function Ψ (T, Y) is defined for all 

• the function Ψ (T, Y) is monotone with respect to inclusion. 

For t0 = 0 and an implicit m-stage interval method of Runge-Kutta type is 
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(14) is of the form iteration process For system of equations (9) the 

is convergent to an element , that is for an arbitrary choice of 

(14) X ( l + 1 ) = G(T , X(t)), l = 0,1,..., 

Assuming that G is a contracting mapping, from the fixed point theorem (see e.g. [9]) it 

follows that the iteration process 

where 

X = G(T , X ), 

For the methods given by (8)-(9), in each step of the method we have to solve a nonlinear 

interval system of equations of the form 

intervals Tk, which appear in the formulas (8)-(9), have to be taken in such a way that 

We divide the interval into n parts by the points tk = kh, k = 0,1, ..., n , and the 

(13) 

and the number η0 has to fulfil the condition 

(12) i = 1, 2, ..., m, 

are evaluated in such the numbers and For 

a way that 

where 

(11) 

(10) 

If h0 denotes a given number, then the step-size h of the method (8), where 

calculated from the formula 

, is 

are not interesting on account of a great cost of calculations. Therefore, we consider the one-, 

two- and three-stage methods up to the fourth order inclusive. 
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where 

(15) 

and in this way we reduce the number of iterations. 

In order to solve the initial value problem (l)-(2) by the implicit interval method of Runge-

Kutta type we must determine the integration interval [0, η*m ] on which the method may be 

applied (see [10]). 

4. THE E X A C T REPRESENTATIONS OF THE NUMBERS IN THE COMPUTER 

In numerical problems handled on the computer, one usually chooses the machine type 

which has a maximum number of significant digits. In the Object Pascal language this feature 

is represented by the Extended type. The value of a number w (in the Extended type) can be 

determined as follows (see [11] page 11-5) 

where s is the sign bit (0 or l), c denotes the exponent, m denotes the mantissa, and i denotes 

the digit (0 or l) in front of the point in the mantissa (the numbers are normalized). If c = 2 1 5 , 

then the number represented in this case is infinite (Inf) or is designated as NaN 

(not-a-number). An occurrence of NaN usually indicates an attempt to store a number with a 

magnitude which is larger than allowable (overflow) or an attempt to store a nonzero number 

with a magnitude which is smaller than allowable (underflow). 

REMARK: 

In the further considerations we do not deal with the cases Inf and NaN. 

If in each equation of (l5) we insert all approximations calculated so far, then we get the 

process of the form 
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Theorem 1. 

2) the numbers of the form , where for we get the case l), 

l) the integer numbers 

in any real type must have a finite expansion of the mantissa. So, in floating-point notation 

quantity z will occupy at most all bits of the mantissa in the real type considered (see also 

[l2]). 

The machine representation of a quantity z which is a result of the operation 

Proof. 

If z = rd(z) in any real type, then the cases NaN and Inf do not occur. The quantities x, y 

are exactly represented, and therefore x = rd(x) and y = rd(y). If an operation 

is exact, i. e. the result of this operation is not rounded, then 

Fig. 1. Machine representation of a real number in the Extended type 

The mantissa m of the number w in the Extended type occupies 64 bits and it can be shown 

that its value is where mi = {0, l}. 
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Table 1. The operations +, -, with exact quantities 

From Table l it is obvious that the presented results have exact machine representations. 

3) zero (A = 0), 

4) the numbers of the form where because , where 

and hence which means we get the numbers of the form given in 2), 

5) the numbers of the form where 

because, 

which means we get the numbers of the form given in 4). 

So, in order to show that a number is represented exactly, one should verify that it is 

possible to represent it in the form l), 2) or 3). 

REMARK: 

For the exact numbers x, y, z, and an operation is commu-

tative, i. e. 

In the further part of this paper the notion exact number will denote the exact machine 

number. 

In Table l we present the results of the operations from the set {+, -, } using exact 

quantities, where 
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1) cj = 0, then ci = 

2) cj Z or cj = 

If for exact values of cj there exist exact values of then (for and 

we should consider the following cases: 

for where 

exactly. 

5.2. Two-stage implicit interval methods 

Theorem 3. 

In floating-point interval arithmetic there are two-stage methods of third- and fourth-

order which have coefficients with exact representation in the computer. 

Proof. 

For each of the methods we must carry out the proof separately (see also [l3]). 

Two-stage methods of the third order (m = 2, p = 3) - general solution 

All families of solutions without irrational values contain the following formula: 

5. THE MINIMIZATION OF THE WIDTHS OF INTERVAL SOLUTIONS 

5.1. One-stage implicit interval methods 

Theorem 2. 

In floating-point interval arithmetic the coefficients of the one-stage implicit method of 

the second order which are represented exactly. 

Proof. 

The coefficients of the one-stage method of the second order, called the midpoint method, 

are as follows: w1 = 1, c1 = , a11 = . In the computer all these values are represented 
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2.l) 

2.2) 

for 

for , (numerator is even, and denominator is 

the multiplicity of number 3), 

2.3) , then 

for 

for 

Two-stage methods of the third order (m = 2, p = 3) - semi-implicit methods 

All families of solutions without irrational values contain one of the following formulas: 

a) 

b) 

c) 

REMARKS: 

• Point a) has been considered for the general solution of these methods (m = 2, p = 3 ). 

• Point b) follows from point a): 

This formula differs from the formula given in point a) only by the constant equals -1 in 

the numerator of the second fraction (it does not essentially modify the proof). 

• In point c) we investigate whether for the exact values of there exist exact values 
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1) 

2) 

Two-stage methods of the third order ( m = 2, p = 3 ) - symmetrical methods 

All solutions contain irrational values. 

Two-stage methods of the fourth order ( m = 2, p = 4 ) - general solution 

All solutions contain irrational values. 

5.3. Three-stage implicit interval methods 

Theorem 4. 

(the numerator is even and the denominator is the multi-

for 

for 

plicity of number 3), 

of where 

Hence, for and we should consider the following cases: 
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Proof. 
For each of the methods we should carry out the proof separately (see also [13]). 

Three-stage methods of the fourth order ( m = 3, p = 4 ) - general solution 

All families of solutions contain the following formula: 

where . Hence, if 

If for the exact values of c1, c2 and c3 for i, j = 1, 2, 3 ) there exist the exact 

value of w2 then (for and we should consider 

twelve cases presented in the following table: 

1) c1 = 0 , then 

where or 

2) c2 = 0, then 

where or 

3) c3 = 0 , then 

for L, j = 1, 2, 3, then 
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where or 

a) 

2.1) 

2) c2 = 0 

in the form 

second element of the numerator is even. Thus, the coefficient w2 cannot be represented 

If w2 is of the form , then the numerator must be the multiplicity of number 3. But the 

for 

b) then 

then a) 

1.2) 

In both cases the denominator is divisible by 3, but the second element of the numerator is 
even. Thus, the numerator is not the multiplicity of the denominator and 

for 

b) 

a) then 

, then 

1.1) 

1) c1 = 0 

The case in 3) is analogous to the case presented in 1). It means it is enough to prove the cases 

in 1) and 2). 
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This formula is similar to the case considered for the general solution. 

Three-stage methods of the fourth order (m = 3, p = 4) - semi-implicit diagonal 

methods 

All solutions contain irrational values. 

where for i, j = 1, 2, 3. 

Three-stage methods of the fourth order (m = 3, p = 4) - general solution with the 

supplementary conditions 

All solutions contain irrational values. 

Three-stage methods of the fourth order (m = 3, p = 4) - semi-implicit methods 

All families of solutions contain the following formula: 

must be the multiplicity of number 3. This is impossible, because the first element of 

the numerator is even. Thus, the coefficient w2 can not be represented in the form 

If w2 is of the form then the numerator of the expression 

In both cases where i = 1, 3 , and 

b) 

a) 

2.2) 

b) 

In both cases where i = 1, 3 , , and 

If , then the numerator must be divisible by 3. But the first element of the nu-

merator is even. It means that the numerator is not the multiplicity of the denominator 

and 
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Three-stage methods of the fourth order ( m = 3, p = 4 ) - symmetrical methods 

All families of solutions contain the formula as follows: 

for i = 1, 2, 3 and 

If for the exact value of ci there exist the exact value of w2, then it is necessary to 

consider the following cases: 

where and 

3) ci = 0 , then 

4) or 

4.1) w2 = 0, then 

4.2) , then 

for we get 

for (the numerator is even we obtain 

and the denominator is the multiplicity of number 3), 

4.3) , then 

for we receive 

we have for 
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6 . R E M A R K S 

In this paper it has been shown that there is only one implicit interval method of Runge-

Kutta type (up to the fourth order inclusive) which has coeff icients represented exactly in the 

computer. It is the one-stage method of the second order called the midpoint rule. For the 

other methods there is no combination of coeff icients for which the widths of interval-so-

lutions are minimal. 

We tried to prove that it w a s poss ible to minimize the width of interval solutions with 

respect to some constants occurring in the estimation of this width (see [1] and [2]). 

Unfortunately, it appears to be impossible. Another minimization, i.e. the minimization with 

respect of these coeff icients for the function ψ( t k , y(tk)), see (6), is considered in the theory 

of classical Runge-Kutta methods (see e.g. [6]). In the case of interval methods of this type we 

can do the same. From our experience it fo l lows that this is the only w a y in which 

the diameters of interval solutions are minimized. 
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