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Abstract : Experience with adapting sequential programs to a parallel environment is shared with 
the reader. Our programs are used in quantum-chemical calculations but certain parts of them are of gen-
eral application and our results can be adapted to other types of problems. Several PC nodes are 
connected through a fast network and consolidated to a cluster. Our applications make use of the Mes-
sage Passing Interface environment. Encouraging results concerning speedup and efficiency have been 
obtained. Experiments leading to a superlinear speedup using the hyperthreading technology are also 
reported. 

1. INTRODUCTION 

Enormous progress in computer technology has stimulated continuous adaptation of 

s o f t w a r e to quickly changing computational environment. Often, an old algorithm has to be 

implemented on n e w machines appearing in the market. In particular, parallel computers 

become more and more access ib le which calls for a modification of the exis t ing s o f t w a r e to 

m a k e use of the n e w opportunities. 

In quantum chemical calculations, as wel l as in other areas of computational science, 

the opportunity of shortening the t ime one wai ts for the f inal result cannot be overest imated. 

In this paper we descr ibe our e f f o r t of adapting algorithms used in quantum chemical calcula-

tions to the situation when a set of several PC machines are connected f o r m i n g a cluster. In 

other words , we want to share our experience with paral lel izing sequential programs using 

a M e s s a g e Pass ing Interface (MPI) environment. 

Our paper is addressed to the reader w h o has got an access to more than one processor and 

wants to utilize this to speeding up his computations. We show, in an elementary w a y , h o w to 

set up a cluster, i.e. h o w to m a k e t w o or more processors to communicate, us ing the MPI 

technology. Then we present results for a speedup and e f f ic iency obtained in a s imple case of 

f i l l ing up a matrix with the elements which are assumed to be mutually independent. And 

f inally, we share our exper ience in deal ing with a new technology called hyperthreading, 

which results in a superlinear speedup. 

* Dedicated to the memory of Professor Jacek Rychlewski 

user
Tekst maszynowy
CMST 9(1) 137-145 (2003)

user
Tekst maszynowy
DOI:10.12921/cmst.2003.09.01.137-145

user
Tekst maszynowy

user
Tekst maszynowy



138 M. Torchata and J. Komasa 

2. MOTIVATION AND QUANTUM-CHEMISTRY ESSENTIALS 

In this section we introduce some quantum-chemical notions to show the origin of our 

interest in the parallelization of the matrix algebra programs. As in most quantum-chemical 

methods we start with the Schrödinger equation 

(1) 

Here, Ψ represents a w a v e function describing a given quantum-mechanical system, E -

energy of this system, and is the Hamiltonian operator specifying components of the energy 

included in the model. We shall focus on variational solutions to the Schrödinger equation. 

The variational method is based on the theorem saying that for any square-integrable trial 

function Φ, the so called Rayleigh quotient 

(2) 

satisfies the following inequality ε E which means that the energy computed using 

an approximate wave function gives an upper bound to the exact energy, E (see e.g. [1]). This 

general principle is employed as a guide in search for possibly accurate approximations to 

the exact wave function and energy. To make use of the variational principle we expand the 

trial wave function Φ in the form of a properly symmetrized linear combination of some 

(3) 

Substitution of (3) into (2), subject to the stationary condition on the linear coefficients, 

= 0, leads to a matrix form of the Schrödinger equation 

(4) 

with matrix elements Eq. (4) has a well known form of 

the general symmetric eigenvalue problem (GSEP) and can be solved using standard linear 

algebra methods [2]. 

As the Hamiltonian operator is Hermitian, the matrices involved are symmetric - it is 

sufficient to compute only the lower or upper triangle of the matrix - which is an important 

and time saving feature. 

known basis functions, 

In our applications, every basis function depends on several nonlinear parameters. 

The total trial wave function is expanded in thousands of such basis functions, hence it de-

pends on a huge number of linear and nonlinear parameters which have to be optimized with 

respect to the energy. During such an optimization the eigenvalue ε of Eq. (4), has to be evalu-
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ated mil l ions of t imes. This is a quite t ime-consuming task and it is def ini te ly worth looking 

for s o m e sav ings inside the algorithm evaluat ing the goal function, ε . 

Every s ingle evaluation of the energy consists of two computationally distinct parts. In 

the f i r s t part, the matrix elements h a v e to be updated in accordance with the changes in 

the nonlinear parameters governed by an optimization algorithm. E f f o r t needed to compute 

a s ing le matrix element depends primari ly on the number of electrons, n, a particular quantum 

system is built of, and, roughly speaking, scales as n ! . This n !-dependence of matr ix elements 

is a real bottleneck of quantum chemical calculations which prevents the most accurate 

methods to be applied to large atoms and molecules. This part of the algorithm operates 

most ly on scalar var iables and, because of the mutual independence of the matrix elements, it 

suits v e r y wel l any parallelization scheme. In this work we concentrate on this aspect of 

the energy computation. 

T h e second part - the solution of the GSEP is typical linear a lgebra task and its paral lel iza-

tion is not trivial [3]. However , i f the w o r k needed to compute matrix elements e x c e e d s s ig-

nif icantly the diagonalization e f f o r t then per forming the matrix a lgebra on a s ing le processor 

is an acceptable solution. The interplay between these two parts w a s invest igated prev ious ly in 

Ref. [4] where we concluded that for quantum systems with t w o elect ions the most t ime 

consuming is the matrix a lgebra part but f o r larger systems, with four and more electrons 

bui ld ing the matrices requires much more CPU time and, hence, the programmer ' s attention. 

The w o r k described in this paper is the step towards improving the e f f i c i e n c y of our 

multielectron optimization programs. 

3. SETTING UP A CLUSTER 

Our cluster w a s set up by means of MPICH - a f ree ly ava i lab le implementation of 

the M e s s a g e Pass ing Interface l ibraries created by Mathematics and Computer Science 

Divis ion [5, 6]. The " C H " in MPICH stands for "Chameleon", s y m b o l of adaptabil i ty to one's 

environment and thus of portability. It has been installed on a s ix-node cluster. Each node w a s 

equipped with t w o Pentium III 800 M H z processors with 2 5 6 MB R A M on an SMP (sym-

metric multiprocessor) motherboard. The nodes w e r e connected by means of a 100 MB/s local 

network. Our algorithm w a s coded in Fortran 77 under Linux Mandrake 7.2 operat ing system. 

Several s imple adjustments of the operating sys tem have to be per formed to enable f u l l func-

tionality of the collection of the nodes as a s ingle cluster. T h e y are shortly descr ibed b e l o w . 

One node w a s selected a server (often called master) and the remaining w e r e conf igured as 

workstat ions (s laves). A common disk space w a s made avai lable us ing a NFS - network file 

system, which a l lows a client node to perform transparent fi le access over the network. To 

grant the s laves an access to its disk space the master node requires the f o l l o w i n g entry in 

the /etc/exports file 

/directory workstation! (rw) workstation2(rw)... 
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where /directory is the path name of the served filesystem. On the workstations the file 

/etc/fstab was added the following line 

server/directory /directory nfs bg,intr,noac 0 0 

The machines were set up to communicate through the SSH (Secure Shell) client-server 

system. In the iptables file, we allowed traffic on ports f rom 0 to 1023 and on 2049 (input and 

output), and we blocked incoming traffic f rom other hosts than these in our cluster. 

The Fortran code was compiled and linked by calling a shell script included in the M P I C H 

package 

./mpif77 -o prog prog.f 

In order to run the program we type 

./mpirun -np number_of_processes prog 

An MPI program written in Fortran has to have in the main module a directive include 

'mpif.h'. This file, supplied with the M P I C H distribution, contains all the definitions and func-

tions needed to compile an MPI program. In coding, we used only six MPI functions shortly 

described here. The first three of them: MPIJNIT, MPI_COMM_RANK, and MPI_COMM_SIZE 

initialize the MPI calculation by setting appropriate variables, the next two functions 

MPI_SEND, MPI_RECEIVE perform the interprocess communication, and MPI_FINALIZE con-

cludes the MPI run of the program. Syntax and other details of using these functions can be 

found in the MPI documents [7, 8]. 

Creating an algorithm to be run in parallel we have to realize some issues connected with 

physical execution of the j ob on multiple processors. Execution of the mpirun command places 

a copy of the executable on a number of processors depending on the value of the option, -np. 

Additionally, the user can decide on which nodes the processes are allowed to run through the 

option -machinefile file_name, where the file file_name contains a list of the hostnames 

accompanied by a number of available processors in the following format: 

hos tname1:2 

hos tname2:2 

Depending on the algorithm coded, different processes can fol low different routes by 

executing branching commands referring to the process rank - a non-negative integer. We say 

that the MPI program works within the Single Program Multiple Data (SPMD) paradigm. 

3.1. L o a d ba lance and p r o g r a m m i n g issues 

Having this in mind one can think of load balance issues i.e. a possibly equal distribution 

of the work assigned to each process. The parallel program is only as fast as its slowest 

component and a good load balance is the main feature of any efficient parallel program. 
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where η and η1 are the ideal and actual number of matrix elements assigned to the I-th 

processor. For instance, when computing the last column of a 1600 x 1600 matrix using 

the above mapping and 12 processors we obtain σ = 0.5%. The model described above works 

effectively on a cluster built of identical processors. Another interesting issue is how to 

balance the workload when a j o b is to be run in an heterogeneous environment. A detailed 

discussion on this topic can be found in Refs. [4, 9]. 

In principle, a parallel algorithm can be based on two different paradigms: symmetric and 

nonsymmetric (master-slave). After some numerical experiments we have chosen the latter 

model as slightly more effective. We realize, however, that the preferences observed can 

revers when the type or even size of the problem changes. A general conclusion from our tests 

was that with the currently available network throughput and for the given problem size 

(K= 1600) the communication time was not very meaningful and no additional modification 

of the algorithm was needed. An example of a simple realization of the ideas described above 

is presented in the form of a schematic code listed below. 

call MPIJNIT(error) 

call MPI_COMM_RANK(MPI_COMM_WORLD, who_am_l, error) 

call MPI_COMM_S[ZE(MPI_COMM_WORLD, N, error) 

if (who_am_l .eq. 0) then 

do j = 1, K 

do i = j, K 

{DIVIDING TASKS e.g. according to Eq. (5)} 

if (I .eq. 0) then 

{PROCESS 0 COMPUTES MATRIX ELEMENT} 

endif 

. enddo 

enddo 

do source = 1, N-1 

(5) 

(6) 

Computing an upper triangle of a K×K symmetric matrix we used the fol lowing mapping 

of the matrix element position ( i , j ) onto the process number I out of the set of N processes 

Such a mapping ensures equal distribution of the matrix elements among the processes. 

The number of matrix elements assigned to a process differs at most by one from that assigned 

to any other process. To describe this issue quantitatively let us introduce a measure of 

the load imbalance [4] 
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{RECEIVING MATRIX ELEMENTS using MPI_RECV} 

enddo 

else 

do j = 1, K 

do i = j, K 

{SEEKING FOR ELEMENTS TO COMPUTE, Eq. (5)} 

if (I .eq. who_am_l) then 

{COMPUTING AND STORING MATRIX ELEMENT} 

endif 

enddo 

enddo 

{SENDING COMPUTED MATRIX ELEMENTS using MPI_SEND} 

endif 

call MPI_FINALIZE(error) 

To estimate the gain obtained f rom the parallelization we measured the time elapsed 

between two checkpoints: one placed be fore cal l ing the MPI initialization functions and 

the other after the f inal iz ing function. The CPU time T 1 measured f rom within Fortran code 

when running on a s ingle processor, without cal l ing MPI functions, w a s then compared to that 

Table 1. The dependence of the speedup, SN, and efficiency, 
WN, on the number of processors employed 

4. RESULTS AND DISCUSSION 

obtained for an N-processor j o b , TN, measured on the master processor. A commonly used 

measures of the parallelization gain are the speedup 
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(7) 

and the efficiency 

(8) 

The final numerical experiments were performed for K = 1600. Their results are presented in 

a tabular and graphical form. Table 1 presents the dependence of the speedup and efficiency 

on the growing number of processors involved in the M P I calculations. Graphically these 

results are displayed in Fig. 1. On both graphs, the dashed line marks the theoretical 

Fig. 1. The dependence of the speedup, SN, and efficiency WN, on the number of processors employed 

limit: SN = N and WN = 1. As can be concluded f rom these pictures and the numerical values 

given in the table, the computation of the matrix elements can be parallelized very efficiently 

in a simple way. 

5. HYPER-THREADING TECHNOLOGY 

In certain circumstances, the speedup can exceed the theoretical limit - we speak then of 

superlinear speedup. Such a situation can appear when the distribution of the data between 

the processors makes better use of the cache memory then in the sequential run. This 

additional gain in speed may cause the efficiency to become higher that 1. With the advent of 

a new class of processors, which use the so-called Hyper-Threading Technology (HTT) [10], 

designed to take advantage of such a feature, an additional increase in the speedup became 

possible. With Hyper-Threading Technology each processor has one set of execution 

resources (as any regular processor) but its architectural state is duplicated. E.g. one node with 

two processors on board can be declared to have total of four logical processors: two real and 

two virtual. Each logical processor is capable of responding independently to system 

interrupts. Such a configuration results in a more effective use of execution resources. 
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Obvious ly , the increase in per formance depends highly on the particular application but 

additional performance gain up to 2 5 % has been reported [10]. 

Table 2. Scaling of the speedup, SN, and efficiency, WN, with the number 
of physical processors, N, without and with the Hyper-Threading 

Fig. 2. The scaling of the performance in both no-HTT and HTT modes 

T a b l e 2 and Figure 2 present results of our own tests per formed on a cluster built of 20 

physical processors collected in 10 nodes (Intel X e o n 2.8 GHz x 2 , 5 1 2 M B R A M ) . The MPI 

program used w a s the same as prev ious ly - no special adaptation to the H T T m o d e w a s 

required. A f t e r switching the operating system to the HTT mode the j o b s w e r e run as i f 

the number of processes in each node w a s doubled. E.g. to take advantage of all 20 processors 

ava i lab le in the H T T regime we run the program with -np 40 option. The e f f ic iency greater 

than 1 w a s observed for all processor configurat ions as listed in the last column of T a b l e 2. 

The additional boost obtained in the H T T m o d e w a s ca. 11%. 



Efficiency of Matrix Elements Computations of Parallel Systems 145 

6. CONCLUSIONS 

The overall conclusion from our numerical experiments with computing mutually inde-

pendent matrix elements is fa i r ly optimistic. The modification of the source code connected 

with the adaptation of the program to the MPI environment is minimal. Scalabi l i ty o b s e r v e d 

on the cluster is v e r y encouraging, particularly, when the Hyper-Threading T e c h n o l o g y is 

utilized. 
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