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Abstract. Integral equations in space-time play very important role in mechanics and technology. Particular 
cases of these equations called mixed integral equations or Volterra-Fredholm integral equations arise in 
the heat conduction theory [4, 6] and the diffusion theory. Moreover, a current density in electromagnetism 
is determined by the Volterra-Fredholm integral equations [4]. Nonlinear counterparts of the equations 
studied in [1] are mathematical models of the spatio-temporal development of an epidemic (the spread of 
the disease in the given population). Some initial-boundary problems for a number of partial differential 
equations in physics are reducible to the considered integral equations [2- 3, 6], In this paper the general 
theory of these equations is used in the projection methods. Presented methods lead to a system of algebraic 
equations or to a system of Volterra integral equations. The convergence of studied algorithm is proved, the 
error estimate is established. The presented theory is illustrated by numerical examples. 

is the integral operator in that a Volterra part plays the dominant role. On virtue this property we 

can prove the existence and uniqueness of solutions of the equation (1) in the spaces C and 

Lp (p 1) [3]. 

(3) 

(2) 
where 

in various physical, mechanical and biological problems. The general theory f o r the considered 

equations in weighted spaces w a s presented in [3], Approximate solutions of Volterra-Fredholm 

integral equations were studied in papers [1-8] 

The mixed integral equation (1) can be written in the operator f o r m 

u =f + Ku, 

defined in domain Integral equations of this type arise 

in space-time is considered, w h e r e / i s given function in domain D = M x [0, T] ( M - a compact 

subset of n-dimensional Euclidean space) and u is unknown function in D; g iven kernel k is 

(1) 

1 . G E N E R A L C O N S I D E R A T I O N S 

The f o l l o w i n g integral equation 
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where {φi}, {ψk} are orthogonal bases in spaces L2(D) and L2[0, T], respectively. 

(5) 

(4) 

where {χi} is the orthogonal basis in the space L2(D). Because it is difficult to define such a 

system we propose the following formula 

2. GALERKIN T Y P E METHOD 

Classic al Galerkin method for integral equation (1) leads to approximate solution of the form 

where 

Proof of this theorem is similar as in the case of Volterra integral equation 

Remark 1 

A solution of the Volterra-Fredholm integral equation can be presented in the operator form 

with iterated kernels 

where r is the resolvent kernel defined by the formula 

is uniformly convergent to unique solution of equation (1) given in the form 

Theorem 1 

Let f and k be continuous functions on D and Ω respectively. Then the sequence {un} defined 

by formula 
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(6) 

where 

(7) 

(8) 

Theorem 2 

Let {φ i}, {ψ k }, are orthonormal complete systems in the spaces L2(M) and L2[0, T], 

Example 1 

Relative errors (n = 6) 

C o e f f i c i e n t s cik(i, k = 1, 2 , . . . , n) are d e t e r m i n e d by the o r t h o g o n a l i t y condi t ion in L2(D) of t h e f o r m 

(5) 

where 

is a deviation function. 

In practice, we restrict our considerations to the orthonormal basis. Then we get the following 

system of linear algebraic equations 

respectively. If then the system (6) is uniquely solvable and the sequence 

defined by the formula (5) converges to the unique solution of the equation (1) in the space L2(D). 

The proof is similar as in the case of the Fredholm integral equation and it is based on the 

Fourier series theory. 
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Dependence of average relative error of a number (n) of basis functions 

Example 2 

The average relative error dependence on the number (n) of basis functions 

3. GALERKIN-FOURIER T Y P E METHOD (GF - METHOD) 

In this section we propose a projection method for the equation (1) leading to solve a system 

of Volterra linear integral equations. Numerical solution of (1) we search in the form 

(9) 

{φj} is an orthonormal and complete basis in w L2(M); 

{a j } is a solution to a system of the following Volterra integral equations 

(11) 

(12) 

(13) 

then function (9) is a If. and 

unique solution in the space L2(D) of the equation 

(10) 

with 

for where: 

L e m m a 1 
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with 

(14) 

(15) 

Proof. Putting (14) and (15) in (13) and using linear independence of system {φj} we get 

(16) 

where 

(17) 

By orthonormality of {φk} from (16) and (17) we obtain the Volterra system of integral 

equations 

(18) 

It follows from the assumptions above and the Volterra theory, that this system has a unique 

solution {u j } in the space L2[0, T] such that uj(t) = aft) for every j=1,2,. . . , n. 

The equation (13) can be rewritten in the operator form 

(19) 

where Kn is the Volterra-Fredholm integral operator of the form (3) determined by the kernel kn 

defined by the formula (15). 

Theorem 3 

If then the sequence {u n } defined by the formula (9) converges in 

the space L2(D) to the unique solution of the equation (1) and the estimated error 

(20) 

holds with 

is the operator norm). 
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is a unique solution of equation (1). By the above considerations we have 

where 

To obtain estimate (20) let us notice 

Then from (21) we get 

and 

Similarly 

and 

Using the theory of Fourier series and properties of the Lebesgue'a integral [7] we have 

for every 

for every 

where 

Putting p = 2 in the theorem 2 and remark 1 of the reference [3] we obtain the following estimate 

(21) 

Hence 

Proof. Subtracting (19) and (2) we get 
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(22) 

From the above we get the estimate (20). 

4. IMPLEMENTATION OF THE GF METHOD IN MAPLE V 

Let us consider the following integral equation of the Volterra-Fredholm type 
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The presented above theory is illustrated by the Legendre polynomials {P j} in the ortho-

normalized form 

forming a complete system in L2
( -1, 1). 

Functions aj (j= 1,2,..., n) determining the approximate solution (9) of the equation (1) are 
calculated by the system of Volterra integral equations (10) using the Newton-Cotes quadrature. 

Example 3 
Consider the integral equation 

The Galerkin-Fourier method restricted to following basis functions {φ j } j = 1, 2, 3 leads to solve 

the system of n = 3 integral equations of the Volterra type. 

5. NUMERICAL EXPERIMENTS 

with an exact solution 
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The relative errors with the step of quadrature formula h = 0.1 are given below: 

n = 6 

we propose for n = 4 and n = 6 basis functions with h = 0.1. 

The tables below give relative errors dependence on n- the number of basis functions 

n = 4 

with the exact solution 

Experiments for n = 4, n = 5 and n = 6 give similar errors. 

Example 4 
As an approximate solution of the integral equation 
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n = 7, ,h = 0.05 

Example 5 

n = 7, h = 0.1 

In the following examples the error dependence on the number of the basis functions, n, and 

on a step of the quadrature formula, h, are presented. 
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n = 6, h = 0.1 

n = 6, h = 0.05 

Example 6 

n = 5, h = 0.1 
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n = 5,h = 0.05 

n = 6 , h = 0.05 

n = 6, h = 0.1 
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6. C O N C L U S I O N S 

Comparing the examples 1 and 3 we notice that for n = 3 the method of the Galerkin-Fourier 

type g ives better results than the Galerkin type method for n = 4, 5, 6, 7. The G-F method is 

dependent on the precision of so lv ing the system of the Volterra integral equations; in the ex-

ample 2 better results are obtained than in the example 5. Increasing the number of the basis 

functions, n, and the step of the quadrature formula, h, g ives results of increasing accuracy. 
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