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Abstract. We study the relaxation from a metastable state using a stochastic process which is related to the 
generating function of the system by means of Feynman-Kac formula. The results of such representation are 
compared with direct numerical simulations of the stochastic differential equations describing system's 
evolution. We have found that the stochastic representation is more efficient from computational point of 
view then the direct simulations. The problems related to its numerical implementation are discussed. 

INTRODUCTION 

In this paper we are concerned with numerical simulations of the escape from a metastable 

state caused by the presence of an external noise. Such problem appears in many areas of physics 

and the literature on this subject is very large (see for example [1], [2]). The process of escape 

can be rigorously described by a Fokker-Planck equation, which gives the probability distribution 

of finding the system at different points of its phase space as a function of time [ 1 ]. Alternatively 

one may introduce a set of stochastic differential equations for the process such that the ensemble 

of states evolving according to these equations is characterized by the time dependent probability 

distribution obtained from the given by the Fokker-Planck equation. In the following we shall 

consider a very special case in which the stochastic differential equation describing the time 

evolution of our system has the form: 

(1) 

where X is the variable describing system's state and x denotes time. dW is the external noise (for 

example associated with a thermal bath) on which we assume that it is an uncorrelated Gaussian 

white noise. Such equation describes the evolution in the field of a cubic potential V(x) 

characterized by two positive parameters A and B 
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Therefore is also divergent at t = t*, but in a weak, logarithmic sense. 

(5) 

For the deterministic dynamics this quantity equals: 

In order to smooth out the instability at t* one may introduce the time average quantity 

instantaneously jumps to For t > t* the relaxation towards the stable state is given by the 

expression: 

(4) 

beginning x(t) diverges to and at 

and the system uniformly approaches the stable state. However if than at the 

(3) 

which we consider below. We study the time evolution of the system by considering the average 

value of x as a function of time. In the simplest approach one may try to obtain it from the direct 

simulations of Eq. (2). Using Eq. (2) as an example we shall show that there are systems for 

which a stochastic representation for the generating function gives the information on system's 

evolution in a more efficient way than the direct simulations. 

It is worth noticing that the deterministic part of Eq. (2) has interesting properties. If the noise 

is neglected then the system has two stationary states (x1 = 0 and x2 = - a ) ; the first is stable 

whereas the other is unstable. If initially the system is at then its evolution 

towards the stable stationary state is given by the formula: 

(2) 

one may easily transform Eq. (1) to a simpler form: 

and ε gives the strength of the external noise dW. Introducing the scaled variables x = (B/ε2)1/3 X, 

t = (B 2 ε 2 ) 1 / 3 τ and the scaled parameter 
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next escape may occur. If an ensemble of stochastic systems is concerned then, by analogy with 

a set of deterministic systems with continuously distributed initial conditions [3, 4], one may 

expect that the average over the ensemble will have a logarithmic divergence, and furthermore 

where N is the number of individual trajectories. 

Figs. 1A, IB show <x>(t) obtained from two different stochastic simulations of an ensemble 

of states with the initial condition xi(t = 0) = 0. The parameter a = 2 and the results shown in 1 A, 

1B correspond to N = 100,000 and N = 2,000,000 trajectories respectively. The time step 

Δt = 0.0001 and the cutoff we introduced was xc = 14 = 7a. One can see that after the first 

"escape", which happens for t ~ 1, the value of <x> becomes "chaotic" and the increase in the size 

of ensemble studied (cf. Fig. 1B) does not help in obtaining more precise information on system's 

(6) 

When the thermal noise is present the system may overcome the barrier at x = -a, next it 

escapes to Than the and finally returns towards the neighborhood of the stable state from 

that the ensemble average of the time average is a continuous function of time. 

The direct numerical simulations of Eq. (2) are concerned with a finite sample of systems 

evolving according to it. The behavior of any finite sample may be dominated by a few escaping 

trajectories, which contribution significantly changes the average. The lowest order algorithm for 

numerical simulations of Eq. (2) we use is based on the Euler-Maruyama integration scheme [5]: 

where ξ is a noise with zero average and unit dispersion. The accuracy of such algorithm depends 

on the time step used and for a typical values (Δt ~ 0.0001) one can easily apply it when |x(t)| 

is small. However for |x(t)| 1 the deterministic term becomes large and one should reduce Δt 

in order to keep the desired numerical accuracy. Using such procedure the system never reaches 

as predicted by the analytical formula for evolution. and so never " jumps" to 

The " jumps" may be incorporated to the numerical simulations of the system (2) if one 

introduces a cutoff in x(xc) such that the stochastic term in the dynamics may be neglected as 

small if compared with the deterministic one for |x |>x c . Now one can match a numerical solution 

of Eq. (6) for | x | xc. As the result we are xc with the analytical solution [Eqs. (3,4)] for | x | 

able to study the stochastic evolution in the neighborhood of the stable state and take into account 

the instantaneous jumps predicted by the deterministic dynamics. 

In the numerical simulations the evolution of an ensemble of states characterized by the same 

initial condition is studied (we shall denote the individual trajectories by x i). The average state 

of the system is defined as the mean value of <x i(t)> obtained in simulations. Similarly, the 

ensemble average of the time average is: 
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Fig. 1 <x>(t) obtained from two different stochastic 
simulations of an ensemble of states with the initial 
condition xi (t = 0) = 0. The results shown in 1A, IB 
correspond to N = 100,000 and N = 2,000,000 
trajectories respectively. Fig. 1C presents the results 

that a larger statistical sample (and, of course, longer computation) is required for higher 

accuracy. In the next sections we show that there is another, more efficient numerical method 

which gives required information on the process 2. 

T H E S T O C H A S T I C R E P R E S E N T A T I O N F O R G E N E R A T I N G F U N C T I O N 

In this section we introduce the stochastic representation for the generating function of system 

(2). The generating function of a stochastic process x(t) can be defined as: 

(7) 

evolution. Here at the price of 20 times longer calculations we were able to reduce a bit 

fluctuations between big spikes. The time averaged quantities behave in more regular way, 

as shown in Fig. 1C, and the results of different simulations are quite close to one another even 

for the times the evolution of <x> is "chaotic". The increase in size of simulated sample from 

N= 100,000 (circles) to N = 2,000,000 (triangles) reduces the fluctuations in but it is clear 

for for N = 100,000 (circles), N = 500,000 
(crosses) and N = 2,000,000 (triangles). 
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where the symbol < >ξ means that the. average is taken over all realizations of the noise ξ. Knowing 

the generating function one can easily obtain the average value of x in the stochastic process 

because: 

(8) 

(11) 

(13) 

Assuming a discrete time increment Δt one can write down the equation for the time evolution 

of G in the form: 

(9) 

where Δu and Δu* are complex conjugate noises, independent for different t, with the following 

properties: ((Δu t)
2)u = ((Δu* t ) u = 0, (Δut Δut *)u = Δt and the average < >u denotes the average over 

different realizations of the process u. Therefore, the time evolution of the generating function 

can be written as 

(10) 

where the stochastic process y(t) satisfies the equation 

with initial condition y(0) = x0. Solution of Eq. (11) in the discretized time axis tk = kΔt [for 

simplicity, we use the notation ƒ(k) =ƒ(tk)], is 

(12) 

where the auxiliary process v is defined as 

It is possible to show that Eq. (13) is equivalent to the following stochastic differential equation 

for v 

(14) 

The final expression for the generating function is 
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(15) 

The presented approach can be obtained by a straightforward generalization of the Feynman-Kac 

formula [6, 7], which shows how to construct an auxiliary stochastic process, which returns the 

identical generating function as the original one. Equation (14) is a linear stochastic differential 

equation and is easily solved. The result is 

(16) 

Now we can substitute Eq. (16) into Eq. (15) and calculate the derivative over the variable i λ at 

λ = 0. The formula for <x> (t) becomes especially simple if at the beginning the system is at its 

stable stationary state (x(t = 0) = x0 = 0). Then 

(17) 

The average over processes u can be calculated numerically if one considers a reasonably large 

sample of stochastic processes v(t, s) obtained for different realizations of the noise u. The values 

of 

N U M E R I C A L A P P L I C A T I O N O F T H E S T O C H A S T I C R E P R E S E N T A T I O N 

F O R G E N E R A T I N G F U N C T I O N 

In the following we shall discuss the numerical efficiency of the stochastic representation for 

the generating function. For numerical simulations we considered the system discussed in the 

Introduction [Eq. (2), with a = 2], In order to apply formula (17) we need to generate an ensemble 

of processes v(t, s) for different realizations of the noise u. This is done using the 

Euier-Maruyama integration algorithm. We have found that small fluctuations in the imaginary 

part of the averaged noise <Δ ut>u make the result unstable. In order to keep the average values of 

u precisely equal to zero we do the following. The noise Δut is generated as Δut = Re(Δut) 

+ iIm(Δut) from the random numbers Re(Δut) and Im(Δut). Together with the original process vt

s 

with the noise Δu t we consider three other processes, for which the noises are equal to: Δu t

(1) 

= Re(Δu t) - iIm(Δut), Δut

(2) = -Re(Δu t ) + iIm(Δut) and Δut

(3) = -Re(Δu t ) - iIm(Δu t). Such 

enlargement in the considered number of processes does not significantly increase the compu-

tation time, as one needs to apply a time consuming generation of random numbers Re(Δu t) and 

Im(Δu t) only once for all four processes mentioned above. 

come form numerical integration of <x> (t). 
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The results shown in Fig. 2 have been obtained for only 10,000 independent processes (and 

therefore 40,000 total). In Fig. 2A the values of <x>(t) calculated from the representation for the 

generating function (the thick lines) are compared with the direct simulations of Eq. (2) for 

N= 500,000 processes. The time averaged quantity coming from the stochastic representation is 

compared with the direct simulations in Fig. 2B (marks of those results are the same as in 

Fig. 1C). For short times the results of both methods are in a prefect agreement. If t > 1.5 we see 

that stochastic representation marked by thick dashed line diverges. This instability is related with 

trajectories v(t, s), which, by chance move far away from 0 (notice that zero is an attractor of their 

evolution). The number of trajectories for the stochastic representation of the generating function 

is quite small and, if by a chance a trajectory which evolves far away from zero appears, its large 

contribution to the generating functions is not compensated by the other processes. To avoid 

divergency one may neglect the distant trajectories in statistics by introducing a cutoff in their 

modules. The thick solid line shows the calculations for the stochastic representation in which 

the cutoff was at the level of 5. The appearance of a diverging trajectory can be clearly seen in 

Fig. 2A for t ~ 2.2, however after it crossed the cutoff and its contribution was neglected in 

statistics, the results for <x>(t) become regular again. The values for <x>(t) obtained from the 

stochastic representation look as a reasonable estimation of the average obtained in the direct 

simulations for a very large number of trajectories. 

Fig. 2. The thick lines show <x>(t) (Fig. 2A) and (Fig. 2B) calculated using the stochastic re-
presentation for the generating function [Eq. (17)]. The thick long dashed line, the thick solid line and the 
thick short dashed line correspond to no cutoff, the cutoff at the level of 5 and the cutoff at the level of 3 
respectively. For comparison we present the results obtained using the direct simulations of the stochastic 
process (2): <x>(t) obtained for N = 500,000 is plotted using the thin dashed line in Fig. 2A, whereas all the 
results of Fig. 1C are shown in Fig. 2B using the same notation 

As expected, the results for are more stable and the influence of going-to-diverge 

trajectory can be hardly seen. Here (Fig. 2B) the stochastic representation gives much more 

precise information on the time dependence of than direct simulations. 
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Figs. 2A and 2B, where the thick short dashed line show the results obtained for trajectories with 

the modules smaller than 3. 

In this paper we considered a peculiar stochastic system, for which the direct simulations do 

not bring precise information on its evolution, even for extremely large statistical ensemble. We 

demonstrated that the evolution of the same system can be precisely described by a careful 

application of the stochastic representation for the generating function. The stochastic represen-

tation is also more efficient from the computational point of view: 3 days of alpha CPU are 

required to obtain quite poor results for N = 2,000,000, where as the stochastic representation 

needs just a few hours. We hope that the stochastic representation for the generating function will 

find many numerical applications because it is general and efficient. 
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Our experience says that the value of cutoff has some influence on the results. If it is too 

large, it plays no role in stabilizing the process. On the other hand, if it is too small than it under 

estimates the absolute values of <x>(t) and The effect of small cutoff is demonstrated in 




