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Abstract. Finite spin models, applicable to investigations of mesoscopic rings, give rise to eigenproblems 
of very large dimensions. Efficient, and as exact as possible, solutions of such eigenproblems are very 
difficult. A method leading to block diagonalization of Hamiltonian matrix is proposed in this paper. For 
a given symmetry group of a Heisenberg Hamiltonian commuting with the total spin projection (i.e. with 
the total magnetization being a good quantum number) appropriate combinatorial and group-theoretical 
structures (partitions, orbits, stabilizers etc.) are introduced and briefly discussed. Generation of these 
structures can be performed by means of algorithms being modifications of standard ones. Main ideas are 
presented in this paper, whereas the actual form of algorithms will be discussed elsewhere. 

1. INTRODUCTION 

Finite spin models have been used in condensed matter physics for many years [1] and have 
been applied to various models of magnetic materials: from the one-dimensional ferromagnetic 
Ising model to the three-dimensional Heisenberg antiferromagnets. Different techniques for the 
extrapolation to the thermodynamic limit have been introduced and many different parameters 
have been calculated: ground state energy, specific heat, spin correlations in excited states etc. 
Recent developments and discoveries have given rise to interests in finite spin models, since they 
can be applied to meso- and nanoscopic systems, especially magnetic macromolecules with well-
determined symmetry groups [2], In modeling of infinite magnets much more efforts are devoted 
to small spin numbers (the Ising models or s = 1 /2, 1,3/2), but with a very large number of nodes 
(up to several millions in the Monte Carlo methods). On the contrary, macromolecules contain 
several (up to N = 30) magnetic ions with relatively large spin numbers (up to s = 5/2), what also 
leads to a veiy large number of states even for a small number of magnetic ions N. Moreover, this 
number increases rapidly with increasing N. However, group-theoretical and combinatorial 
methods yield decomposition of a space of states into subspaces with relatively small dimensions 
and for small and rather simple symmetry groups, like cyclic or dihedral ones, it can be quite easy. 
Therefore, magnetic properties of macromolecules can be investigated very deeply and one can 
fit model parameters in more accurate way. 

The present paper is motivated by possible applications of combinatorial structures in spin 
(magnetic) models. However, the described approach, algorithms, suggested solutions etc. can 
be used in any problem, where a basis of a space of states can be viewed as a set of configura-
tions. Of course, the group-theoretical description implies that a symmetry group of a Hamil-
tonian can be determined. Moreover, if |m 0, m1, ..., mN-1) denotes a basis vector then it is 
assumed that an operator 
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commutes with a Hamiltonian. (In this article elements of all arrays are labeled from 0, as it is 

assumed in C. This is also the standard notation used in Kerber's monograph [3]). In the case of 

magnetic models A is the total spin projection Sz with αj = 1 for all 0 j < N. Of course, it implies 

that, in the case of the Heisenberg model, uniaxial anisotropy is only admissible. However, even 

in the other cases classification of states with the use of eigenvalues M of Sz can be very helpful. 

The paper is devoted to presentation of steps necessary to solve an eigenproblem of a 

Hamiltonian, with a given symmetry group, acting in a finite space of states. The main purpose 

of proposed procedure is to decrease dimension of the eigenproblem, whereas its solution can be 

performed by one of the standard numerical methods and, therefore, it is not discussed here. In 

the next section main objects are presented in two aspects: as elements of spin models and as 

combinatorial structures. The problem is formulated in the Sec. 3, where the basic ideas of the 

proposed solution are presented. The algorithms are presented in Sec. 4. We focus on combi-

natorial aspects of the presented problem, so most interests is devoted to two algorithms: (i) 

generation of partitions of a number N into no more than n parts and (ii) generation of all subsets 

of N-element set - there are n subsets with cardinalities k0, k1,..., kn-1 The paper ends with the 

overall summary. 

2. FINITE SPIN MODELS AS COMBINATORIAL OBJECTS 

One of standard ways of quantum magnets modeling is to consider a finite set of N nodes 

carrying spins sj, 0 j < N, with a spin number s. Each spin can be in one of 2s + 1 states mj = 

- s , -s + 1, ..., s. Tensor products of one-spin states |mj> form a natural basis of the quantum 

space of states. In the case of finite spin models there are (2s + 1 )N such states written as 

(1) 

(2) 

and called Ising states or configurations. However, these states, except for the special cases, are 

not eigenvectors of the Heisenberg Hamiltonians. In the present considerations bilinear isotropic 

interactions are taken into account, so a Hamiltonian has the following form: 

where the sum is taken over all pairs (jk) and are the standard step operators. This 

Hamiltonian commutes with S2 and Sz, so the total spin number S and the magnetization M are 

good quantum numbers. Investigation of the first operator lies out of a scope of this paper, but 

it is veiy important that due to the relation 

(3) 
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the methods presented below can be applied to its eigenproblem. From the combinatorial point 

of view the total magnetization is more interesting, because: (i) the states (1) are eigenvectors of 

Sz with eigenvalues ' and (ii) Sz commutes with all permutations of nodes. Moreover, 

the total spin can be considered as a good quantum number for isotropic Hamiltonians only. 

The first property yields a decomposition of states (1) into subsets (sub-bases) with a given 

magnetization M- -Ns, -Ns + 1,..., Ns. Moreover, the value of M depends on numbers ki, i = 0, 

1,2,..., 2s, of solutions of equations mj = i - s. Of course 

and (4) 

so [k] = [k0, k1, ..., k2s] is a partition of N into no more than 2s + 1 parts. Partitions are grouped in 

classes represented by ordered partitions A number of states (configurations) 

corresponding to an ordered partition, i.e. states with ki projections mj = i - s, is given by a 

polynomial coefficient N! (k0! k1!... k2s!). In the further considerations the time-reversal symmetry 

of the Hamiltonian (2) will be exploited and states with non-negative M will be considered only. 

The second property of Sz is related with symmetry properties of the set of nodes. In a crystal 

lattice, with the Born-von Kármán conditions imposed on it, symmetry is described by a finite 

space group [4], Most macromolecular magnets can be considered as planar rings [2], so magnetic 

ions are placed in vertices of a regular polygon and the symmetry group is isomorphic with a 

dihedral group DN. However, the presented method can be applied to any other (finite) symmetry 

group. 

The group G, as the symmetiy group of a finite set (of nodes), is the subgroup of a symmetric 

group containing all N! permutations of nodes. On the other hand, we would like to apply the 

Schur Lemma, so vector representations of G are necessary. We have to determine a relation 

between these two descriptions (or aspects) of the symmetry group G. 

A homomorphism 

(5) 

(6) 

is the so-called permutation representation of G [3], This action can be raised to the set of Ising 

configurations in the following way 

where is the inverse of σg determined in (5). In general, the vector representation 

is reducible and, therefore, can be decomposed into a direct sum of irreducible representations 

Г of G [5]: 

(7) 

Since G is a subgroup of then each P(g) commutes with S
z

 and, from the definition, with 
Therefore, the irreducible representations Г can be used as labels of eigenspaces of and our 
task is to determine, in the most efficient way, the symmetry adapted basis, i.e. vectors 
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transforming as the standard vectors of Г. Before presenting the final formula some combinatorial 

objects have to be introduced. 

An action of G on a set X can be described by (5) or, equivalently, as an external 

multiplication rule such that 

(8) 

(9) 

(10) 

and gx = σg (x). This shorter notion will be used below. An orbit of an element x X is 

The corresponding structure in G, called a stabilizer of x X, is defined as 

Stabilizers of elements gx G(x) are conjugates of Gx: Ggx = g G x g - 1 The crucial point is the 

following bijection between the orbit G(x) and the set of left cosets of Gx [3]: 

This theorem yields the similarity (a formal definition of a similarity can be found in [3]) between 

actions of G on G(x) and on G/Gx, so all properties of a given action can be determined 

investigating actions of G on sets of cosets G/Gx determined as 

Moreover, it may happen that for some x, x', belonging to different (so disjoint) orbits, the 

stabilizers Gx and Gx ' are conjugated. Orbits with this property form a type, called a stratum, 

labeled by a subgroup U G representing a class of conjugated subgroups in G. Let elements 

g0 = 1, g1 ,..., gm-1 , m = |G| / |Gx|, be representatives of cosets gjU. Then, elements of each orbit 

in type can be labeled by these representatives, i.e. 

If | g j x > stands for a magnetic configuration P(gj) | m0, m1,..., mN-1> then the representation P can 

be restricted to a subspace spanned over vectors belonging to a given orbit. A decomposition of 

this restriction, denoted as P|U, x, into irreducible representations depends only on an orbit type 

so Eq. (7) can be rewritten as 

(11) 

where the direct sum runs over all representatives U of classes of subgroups, representatives of 

and all irreducible representations of G. It has to be underlined that the 

frequency n(P |U,x, Г) does not depend on x and for a finite group G one can easily determine all 

possible decompositions and corresponding irreducible bases [6, 7] 

where 0 α < n(P |U, Г) is a repetition index and γ labels vectors of Г. 

(12) 

orbits G(x) in the type 
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The Hamiltonian symmetry group G, as a subgroup of decomposes a set of states (1) into 

orbits. Moreover, this decomposition can be used for all partitions in the same type and, therefore, 

the same stabilizers are obtained. Since a stabilizer is related to the decomposition into irreducible 

representations Г (11), then it suffices to consider ordered partitions. 

3. PROBLEM FORMULATION 

Since M is a good quantum number, then the basis consisting of the Ising configurations (1) 

can be decomposed into subsets indexed by magnetization, a stability group type and an orbit 

representative x. Moreover, vectors in each subset B
M, U, x

 are labeled by left coset representatives 

g
j
,j = 0,1,..., m - 1, where m = |G |/|U | is the index of U in G. The representation P (6), restricted 

to a subspace spanned over these vectors, decomposes into irreducible representations Г, 

according with (11). Vectors of the irreducible basis are linear combinations of all vectors 

| M U x j > (g
j
 has been replaced by j) for fixed M, U, and x. It can be shown that a general formula 

reads [6] ([Г] denotes a dimension of Г) 

(13) 

(14) 

(15) 

where are the so-called reduction coefficients [7, 8], Matrix elements of any operator, e.g. 

commuting with all P(g) and S
z

 depend only on U, x and α (they do not depend on γ due to 

the Schur Lemma) and are given by the following formula [6] 

where 

Note that the irreducible basis is not used in this formula in the explicit way. To prove this 

equation one needs to introduce the concept of double cosets U\G/V [3, 5]. They appear in the 

natural way, since one considers matrix elements of an operator with a symmetry group G 

between orbits with symmetry U and V. All values j = 0, 1, |G|/|U| - 1, 

k = 0, 1, ..., |G|/|V| - 1, are grouped into sets labeled by double cosets U\G/V. The relation 

presented leads to the following algorithm of the determination of matrix elements: 

1. Take representatives y of all orbits (for given M and V). 

2. Act on |M Vy 0> |y> with all terms of the Hamiltonian (2). Note that the diagonal part 

sz

js
z

k of the Hamiltonian leaves |y> unchanged, but multiplies it by a factor 

whereas each term of the off-diagonal term leads to only one new configuration |y') 

(or to zero if trip mk = multiplied by Jjk and factors related with the step operators. 

3. For each y', found in the previous step, one has to determine its orbit, i.e. a stability group 

U, an orbit representative x, and such gj that gjx =y'. Coefficients do not depend 
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on the Hamiltonian and on the actual configurations x, y, y', but are the group-theoretical 

"parameters" of a considered model. 

Eigenproblems of obtained matrices are solved numerically, so this task is out of scope of this 

paper. For a given symmetry group G the reduction coefficients and matrix elements of 

irreducible representations can be found in many tables or, in simple cases, their analytical form 

can be easily determined (in the case of dihedral groups DN, for example). Having all 

configurations decomposed into subsets labeled by partitions and stability groups one can 

construct a simple search algorithm to realize the third step presented above. Therefore, the main 

combinatorial task is devoted to generation of all configurations, decomposition into orbits, and 

determination of orbit representatives and their stabilizers. If one is interested in states with some 

possible values of magnetization M, then the following tasks should be realized: 

1. Generate all ordered partitions of N into no more than n = 2s + 1 parts. 

2. For a given partition [k] generate all configurations. 

3. Decompose configurations into orbits of G, determine their stabilizers and choose orbit 

representatives. 

4. For all non-negative find non-ordered partitions such that 

= M. Orbits, obtained in the previous step for ordered partitions, are "transformed" for 

those to non-ordered ones. 

5. Construct a search algorithm for efficient determination of a stability group U, an orbit 

representative x, and a label gj in the orbit G(x) for a given configuration y = gjx with U 

being a stabilizer or x. 

These steps are discussed in the next section. We will focus on the first two steps since the 

others can be simply realized. 

4. COMBINATORIAL ALGORITHMS 

4.1. Ordered partitions 

The first, and the simplest, step is to generate all ordered partitions of a number N into no 

more than n = 2s + 1 parts. Several algorithms for partition generation are known [9], but they 

have been constructed to generate all ordered partitions. The algorithm presented below is based 

on this one, which generates partitions in the antilexicographic order, i.e. a partition [k] is 

generated before a partition [k '] if a word k'0, k'1, ... k'm, precedes lexicographically a word 

k0 , k1... km. It means that there exists such min (m, m') that ki = k'i for i < l and k'l < kl, It 

seems that this algorithm can not be applied since the lengths of partitions are not ordered. 

However, the first elements of partitions are ordered. This fact and the notion of associated 

partitions [3] allow to apply this algorithm in our problem. Formally, the partition [k'] associated 

with [k] is determined by the following formula: 
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Hence, the length of the associated partition is equal to the first part in the original partitions 

and, therefore, this numbers (lengths) form a nondecreasing series. Summarizing, to generate 

partitions with no more than n parts one takes partitions with the first part no greater than n and 

then construct their associates. It is the only problem to "jump into" the standard procedure in the 

appropriate place, i.e. when the first part equal n appears the first time. It can be easily solved 

since in this case (almost) all parts are equal. If l = N mod n than the l first parts equal and 

the others - It is worth noting that in the used basic algorithm [9,10] it is easy to construct 

and print out associated partitions. 

4.2. Configurations 

The usual combinatorial problems deal with a very large number of configurations, so the 

standard procedures are devoted to evaluate a canonic transversal in an economic way [3, 330]. 

In the considered problem our needs are different: acting with a given operator on a configuration 

|m0, m1, ..., mN-1) one obtains, as a rule, a linear combinations of many states and, in the next 

step, it has to be determined to which orbits obtained configurations belong. Therefore, we have 

to generate all of them or to find an efficient way to determine a stability group, an orbit 

representative, and a label in the orbit. In this work the first solution is assumed. It follows from 

the fact that we do not need all (2s + 1)N configurations at the same time, but only those for a 

given M and a few partitions, then we can store all of them. Summarizing, our task is: for each 

ordered partitions we have to generate all configurations with ki entries 

mj = i - s. 

To begin with we start with n = 2, i.e. s = 1/2. All ordered partition have only two parts N= 

N+ + N-, where For a given partition [N+, N-] the denotes a number of spin projections 

generation of all configurations is equivalent to the generation of all N+-element subsets of N-

element set. This problem is very well documented in many books on combinatorial algorithms 

[9,10], Similarly, the generation of configurations for a given ordered partition [k0, k1, ..., kn-1] 

is equivalent to the generation of all decompositions of an N-element set into / subsets Ni with 

cardinalities k0, k1..., kl-1 where l is a number of nonzero parts in [k]. Transformation from 

subsets to configurations is very simply: 

There are some algorithms to decompose sets in subsets or blocks with different conditions 

imposed on obtained parts [9], however they can not be simply applied to our problem. It is also 

possible to construct an algorithm with a recurrence with respect to number of subsets, but such 

an algorithm can not be simply realized in all programming languages. In this section we present 

an algorithm to generate all decompositions of N-element set into subsets with k0, k1 ,..., kl-1, 

elements. A program based on this algorithm generates configurations |m0 + s,m1+ s, 

..., mN-1+ s) starting with the configuration 
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The last generated configuration is the above one written in the opposite direction, i.e. 

A number of generated configurations is equal to N!/(k0! k1! ... kn-1 !), what may serve as the 

simplest test of the program validity. The algorithm is based on the standard one generating 

subsets in the lexicographical order, i.e. it starts from {0,1,..., k - 1} and goes through {0, 1,..., 

k - 2, k},..., {0, 1,..., k-2,n) to {n - k,..., n - 1}. The recurrence is removed introducing a 

parameter controlling the current level and some arrays with level-dependent parameters. 

For a given partition [k] = k0, k1..., kl-1, 0,..., 0] a level-dependent number of elements is 

calculated as 

so this arrays contains the number of elements at the ith level. Starting from i = l - 1, a ki-element 

subset is generated at the ith level and one goes deeper, i.e. i is decreased. Of course, one can stop 

at level i = 1, since at level 0 the solution is trivial: there is only one k0-element subset of k0-

element set. However, the standard procedure [9,10] works on the set {0,1, . . . , N - 1}, so actual 

elements available at the ith level are stored in an array AE[n][N], This array is initialized in the 

following way (AE[i] is the ith row of this array), 

(elements denoted by an asterisk "*" are irrelevant). A program can stop in this moment if l = 1. 

In all other cases program generates all k1-element subsets of the NL[l]-element set. The first 

subset contains elements 0,1,... , k1 - 1. Similar initialization has to be made for all levels, so an 

array AA[n][N] is introduced with starting values 

The procedure generates labels of nodes, which cany a given, depending on the level i, projection 

mj. To construct (and print out) a configuration C O N F [ N ] from these values the following 
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The generated configurations is printed out and all k1-element subset of NL[l]-element set are 

generated. After this step, one element in the set N2 is changed and one again goes to i = 1. The 

procedure stops when all kl-1 -element subsets of N-element set are generated. For example, when 

N = 4, n = 3, and [k] = [2, 1, 1] this procedure generates all 4!/(2! 1! 1!) = 12 configurations in 

the following order: |2,1,0,0>, |2, 0,1,0>, |2, 0, 0, 1>, |1,2, 0, 0>, |0, 2, 1, 0>, |0, 2, 0, 1>, |1, 0, 2, 

0>, |0,1,2,0>, |0,0,2,1>, |1,0,0,2>, |0,1,0,2>, |0,0,1,2>. It should be underlined that generating 

subsets at the ith level one needs four parameters: NL[i] - the cardinality of a set, ki - the 

cardinality of a subset, AA[i] - elements in a subset, and the so-called "moving point", i.e. an 

index of an element which was moved in the previous step [9, 10], so an array MP[n] is also 

necessary. The last two parameters are modified during the generation. 

At levels elements different from eaj are available and, moreover, in the starting 

configuration AE[i - 1] contains ki-1, first elements, AE[i - 2] - ki-2 next elements, and so on. 

The row AE[0] contains k0 last elements, as it was mentioned earlier, 

where and The formula (16) yields 

and after generation at the ith level the AA[i] has a form 

where j = 0, 1,..., ki - 1. When a next subset is generated then the array AA is changed and the 

array AE has to be modified accordingly. For example, in the first step AA[1] is modified to [0, 

1, ..., k1 - 2, k1] and, therefore, AE[0] = [N - k 0 - l , N - k 0 + 1 , ..., N - 1,*,...,*]. Note that after 

generation of a subset at the ith level the array AE has to be modified at all levels i' < i. Moreover, 

the array AA at these levels is again initialized and one goes back to / = 1. More generally, let us 

assume that available elements at the ith level, stored in AE[i], are as follows 

Therefore, the first printed configuration is 

(16) 

AA: we need the ith row of this array; 

• using the array AE, more precisely its ith row, we determine the absolute, i. e. in the range 

0, 1,..., N- 1, indices of these nodes; 

• at these nodes spin projections have the value i, so the final formula has a form: 

procedure is used (for a spin number s spin projections are limited to the values -s, -s + 1,..., 

s, so, in fact, the array CONF contains values (mj + s) = 0, 1,..., 2s): 

• at first a spin projection i is determined; there are i, nodes with this projection; 

• relative indices of these nodes, i.e. reduced to the range are stored in the array 
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4.3. Orbits 
In the current applications decomposit ion into orbits is done by "brute force", i.e. having all 

configurations generated one takes the first one, generates its orbit removing generated elements 

from the set of all configurations and then goes to the next not removed configurations. There are 

two problems: (i) efficient implementation of the group action what can be easily done for some 

groups, such as cyclic or dihedral ones; (ii) generation of orbits in a "canonical" way. Both 

problems are related to the structure of a group in question. Since the results obtained in the first 

three s teps (partitions, configurations, and orbits) will be used for different values of magne-

tization, one has to construct algorithms for t ransforming obtained results from ordered to non-

ordered partitions and for searching configurations obtained by the action o f , 

O n e of possible ways is to choose generators of G, express all elements as products of 

generators, and to determine action of generators on configurations. In the case of the dihedral 

group DN there are two generators: the N-fold rotation CN and one of two-fold rotations, U0 say. 

Other elements are expressed as CJ
N and CJ

N U0. In such a simple case it is also possible to 

determine action of these elements in a direct way. To solve the second problem, one has to fix 

representatives U of classes of conjugate subgroups. For each U the group G is decomposed 

into left cosets gjU, and the choice of representatives is also fixed. Moreover , the order of these 

representatives is also fixed. This order determines the order of configurat ions in a given orbit 

(in a type T h e reduction coeff ic ients . have to be determined, too. 

Taking into account the above notes, the decomposit ion into orbits is done in the fol lowing 

way: 

1. Knowing number of all configurations NC a boolean array NU[NC] is initialized to NU[j] 

= T R U E . 

2. For k = 0 to k = NC - 1 the procedure is started if NU[k] = T R U E . 

3. The stability group Gk of the kth configurat ion is determined, at first. 

4. If Gk is one of the chosen U's then the generation of an orbit is started. Otherwise, the 

next configurat ion is tested. 

5. The first element of this orbit is, of course, the kth configuration, so NU[k] = FALSE. For 

all representatives of left cosets G/Gk other elements of the orbit are generated, printed 

out, and searched in the set of all configurations. 

6. During the search, especially when comparison of configurat ions may take a lot of t ime, 

one can use the array NU. Of course, for all configurations found the appropriate entry in 

the array NU is changed. 

7. Files, the orbits are written to, should be constructed in such a way that it will be easy to 

determine the ordered partition and the stability group of configurations. It can be done 

by a proper naming convention, for example. 

4.4. Non-ordered partitions 

In the previous sections the results for all ordered partitions [k] are obtained. Consider ing a 

given value M of the magnetization one has to consider, in general, non-ordered partitions [k ' ] 
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5. F I N A L R E M A R K S 

In this work determination of matrix elements of quantum operators for finite systems has 

been presented. The two main combinatorics problems, generation of ordered partitions and of 

configurations, are realized by modification of the standard algorithms. The other tasks, especially 

decomposition of the Ising configurations into orbits and calculation of matrix elements, are 

performed in the simplest possible way. This solution follows from the fact that the efficiency of 

the proposed method depends on the first two steps mainly (and on implementation of the group 

k'1 = k1 or k'1 = k1 2. 

above are transformed into new orbits (with a given M) according with this bijection, i.e. all 

entries i are replaced by σi. In the example presented in the previous section the partition [2, 1, 

1] has been considered. This partition corresponds to M= -1 since one has 2 · (-1) + 1 · 0 + 1 

· 1. If configurations with M = 0 are needed then one has to generate, among others, 

configurations corresponding to the partition [ l ,2 ,1] , The results are obtained after the bijection 

1, so the configurations (before the decomposition into orbits) are as follows: |2, 0,1,1>, |2, 

1,0,1>, |2, 1,1,0>, |0,2, 1, 1>, |1, 2, 0, 1>, |1,2, 1, 0>, |0, 1, 2, 1>, |1, 0, 2, 1>, |1, 1,2, 0>, |0, 1, 1, 

2>, | 1 , 0 , 1 , 2 > , | 1 , 1 , 0 , 2 > . 

4.5. Matrix elements 

Determination of matrix elements of bilinear spin operators, like Hamiltonian or S2, can be 

decomposed into two parts. The easiest task is to calculate the diagonal (or "secular") part, i.e. 

corresponding to terms sz

js
z

k since the Ising configurations are their eigenstates. The other terms, 

s+

js
-

k, transform a given orbit representative to another state, in general an element of another orbit 

with a different group stabilizer. In the first step one has to determine a stabilizer of a con-

figuration s+

js
-

k |Mvy0>, i.e. U in Eq. (14). Next the pair of indices xj, i.e. an orbit representative 

and a label within its orbit, has to be determined. The searching procedure can be simplified when 

one takes into account a relation between partitions [k] and [k '] of the starting and resulting 

configurations. At first, we note that for a given magnetization Meach partition [k] of N into n 

= 2s + 1 non-negative parts is determined by n - 2 = 2s - 1 numbers ki, since all parts have to 

satisfy two (linear) conditions (4). Therefore, one has to "observe" changes in chosen numbers 

kj. For example, when s = 1/2, then no change in those numbers is admissible, so a partition ss 

not modified. In the case s = 1 one can choose k1 to be an indexing number and a partition type 

is changed if and only if a number of projections mj = 0 is affected, i.e. when s+

js
-

k acts on a 

configuration with mj = -1 or mk = 0. Of course, due to the hermiticity of a Hamiltonian this 

relation is symmetric. Since during the generation process configurations are decomposed into 

subsets with respect to stabilizers and partitions, then it is convenient to determine the resultant 

partition [k ' ] and search for the obtained configuration only in this subset. For example, when 

s = 1 and partitions are labeled by k1, then, in a general case, there are only three possibilities: 

there exists at least one permutation σ of indices such that ki = k'σ(i). All orbits obtained 

in the type [k], i.e. [k '] contains the same parts k'i, as [k] does, but they are not ordered. Therefore, 

0 
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