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Abstract: An implementation of numerical algebraic methods of solving a stationary one-dimensional
Schrodinger equation (SODSE) is presented. In the framework of the proposed approach, SODSE is
converted into an algebraic eigenvalue problem, which represents a discrete version of studied problem
on an equally spaced grid. The AMSSE program written in Delphi calculates eigenvalues and corres-
ponding eigenvectors by means of various methods and algorithms described here. It is an efficient and
valuable computational environment, which can be used in science and nanotechnology. Arbitrary poten-
tials can be introduced into AMSSE program in the form of analytic formulae or data tables, or with the
mouse. The user-friendly graphical interface takes advantage of full capabilities of the Windows ope-
rating system. Main program features are described. Efficiency and accuracy of different numerical algo-
rithms are comprehensively tested and compared. Factors influencing accuracy are discussed. Examples

are widely presented. Matrix approach extension to the case ofan effective-mass equation is mentioned.

1. INTRODUCTION
A fundamental problem of nonrelativistic quantum mechanics [1-9] is connected with

solution of stationary one-dimensional Schrodinger equation (SODSE)

C® A2 P(x) _
i V(x) P(x)=e¥(x), )

where V(x) is the potential energy and m denotes the particle mass.

In general, SODSE cannot be solved analytically (exact solutions are known for special
cases of potential energy W(x), and discussed in standard quantum mechanics textbooks [1-9]).
Therefore various numerical approaches have been proposed and applied [10-17], There exist
different ways ofsolving SODSE numerically. These can be classified as follows:

(A) Finite element methods - equation (1) is solved on a finite set of subintervals and the
obtained solutions are matched; the most popular and familiar method, called transfer
matrix method [3, 13], belongs to this group.

(B) Variational Rayleigh-Ritz-Galerkin methods [1-3] - an approximation to the wave
function ¥ is represented as a basis function superposition (chosen in a reasonable
way), and, from variational principle, the secular equation is derived and diagonalized
[18-21], which gives approximations to eigenenergies of (1).

(C) Finite-difference methods, called also grid methods:

(CI) Shooting methods [12-13];
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(C2) Matrix (or global) methods [10, 11, 15-17], which convert the Schrddinger
equation (1) into an algebraic eigenproblem [18-21],
Both (C1l) and (C2) methods are based on approximation of the second derivative of
the wave function in (1) by finite-difference quotients [22],
The main difficulty in applying finite element (A), variational (B), or shooting (C1)
methods is selection of a "good initial guess" for eigenvalues, eigenvectors or complete set of
basis function. In this sense (A), (B) and (C1) methods are not universal. Therefore we prefer
matrix approach (C2), which has the following advantages over the others ones: (1) no initial
guess for eigenvalues or eigenvectors is needed to start computation; (2) neither iteration, mat-
ching nor relaxation procedure is employed; (3) one can use the most efficient and advanced
computer algorithms worked out in numerical linear algebra [18-21].
In subsequent sections of this paper we describe:
(1) Finite difference approach allowing approximation of the second derivative in the
Schrédinger equation (1) by central difference formulae [22];

(2) Matrix representations of SODSE on an equally spaced one-dimensional grid;

(3) Numerical algorithms implemented in our computer program called AMSSE [23]
(Algebraic Methods of Solving Schrodinger Equation), written in Delphi;

(4) Main the AMSSE program capabilities;

(5) Graphical interface;

(6) Discussion of accuracy and efficiency of the algorithms implemented in the AMSSE

program;

(7) Selected results of numerical calculations obtained by means of the AM SSE program;

(8) Matrix approach extension to the case of an effective-mass equation with arbitrary

spatial electron effective-mass dependence.

The presented approach is an intuitive and very efficient technique useful for physicists
and engineers working in solid state physics area, especially in physics of low-dimensional
structures.

2. DISCRETIZATION PROCEDURE AND MATRIX EIGENPROBLEM

The discretization procedure is realized by introducing the grid of points
x=ati-h, i=0,1,2,..., N+ 1, 2

where h= Xxj+; - x5 = (b - @/(N + 1), N is a sufficiently large natural number, and<a, b> is
the interval in which we solve SODSE. We choose the boundary conditions as follows: ¥(a)
~ Y(b) = 0 which, from the physical point of view, means that V(a) = V(b) = (i, e., we place
infinite barriers at the ends of interval <a, b>). These boundary conditions ensure that
the matrix of the algebraic eigenproblem will have a band form.

Next, the central finite-difference formulas are applied in order to approximate the second-

derivative in (1) at x = x, point which can be taken as [22]



W. Salejda etal. 75

h? ®

_z{r//(xi) - g{/.: d

P, 16,,-30F+ 167 - %;%0(114)

T//(xi) — Wi//: d
12h? (4)

dx?

Let us note that (3) and (4) arethree- and five-point central finite-difference formulae, res-
pectively.

Now, using formula (3) or (4), for each grid points (2) we can rewrite differential equation
(1) as an algebraic eigenvalue problem

M¥=¢ ¥, (5)

where My is the symmetric tridiagonal matrix which we write in an abbreviated form My =
trid(b;,a;,bij+1) =trid(-1,2 + ¥ (x;), -1) (notethat (bj,a;bi.1) denotesthe zth row of the
ti idiagonal matrix and the tilde over a symbol indicates corresponding renormalization), or

M, P-12¢ 5’7, (6)

where Mp is a symmetric pentadiagonal matrix which can be written also in abbreviated form;
Mp = pentad (ci,b;,a;,bi.1Ci+1) = pentad (1, -16, 30 + 12V (x), -16, 1); (o, b, & bis1,
Cix 2) is thei-th row of the pentadiagonal matrix, & = 2meh*/# and I7(x,-) =2m V(xi)hzlhz. We
point out that _‘;f’denotes aone-column matrix, i. e.,
@:(yl(xl), Hxy), Hxz), .., P(xN)T:(T], #, SZ'3,--->5V]\/)T
(the upper index T denotes the transposition).

The most general approach to the SODSE solution problem in the finite-difference
schemes has been proposed by Gaurdiola and Ros [15], In this method the second derivative
operator is represented by the Padé approximant [n/m](é\z) [24], being an operator function of
the tridiagonal matrix 3\2 = trid(l, -2, 1), the eigenvalues and eigenvectors of which are
known exactly [15]. In the framework of this approach the Schrédinger equation (1) is con-
verted into an algebraic eigenproblem

AB=(D+h2V)P=¢P, @
where.4 = D + IV is the dense symmetric matrix, D is the diagonal matrix
m

B,
D =L 2 in .= -4y Asin¥| ———— | (7a
o B, = E (- 4)’/lsmf( T )) C, j;( 4)//l]smf( SN+ ))(7)

and elements of matrix ¥ are given by
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N+1
A= —dsintl L7
g 2N+ 1)

otes the j-th eigenvalue of the tridiagonal symmetric N x N matrix 4%= trid(l, -2, 1).
This way we have transformed the original differential equation (1) into an algebraic

eigenvalue problem defined by (5), (6) or (7). Values of ¢, for which nonzero solutions of

quations given by (5), (6) or (7) exist, are called eigenvalues, and the corresponding solutions

are

the eigenvectors. So, energy levels and wave functions occurring in SODSE is reduced to

a computation of eigenvalues and eigenvectors of tridiagonal (5), pentadiagonal (6) or dense

(7

symmetric matrices.

3. NUMERICAL ALGORITHMS IMPLEMENTED IN AMSSE

We enumerate and describe briefly the routines and algorithms implemented in the

AMSSE program [23] for computation of eigenvalues and eigenvectors of algebraic eigenpro-
blems (5), (6) or (7).

1.

Standard algorithm (SA) - this subprogram uses EISPACK routines TQL2 or TQLRAT
[18-21] (based on QR or QL decomposition); note that SA calculates all eigenvalues and
eigenvectors ofthe tridiagonal matrix (5).

Sturm-Martin-Dean algorithm (SMDA) [11, 25, 26] - selected (by the user) eigenvalues
of (5) are calculated by means ofthe Sturm-Martin-Dean sequences, applying a bisection
procedure. The approach is equivalent to the negative-eigenvalue theorem called also the
Sylvester theorem [26], A very efficient new algorithm based on binary search has been
applied.

EISPACK routine (ER) - the subprogram uses EISPACK routine [21], which calculates
selected number of eigenvalues M, in (5) by the bisection method.

Modified Sturm-Padé algorithm (MSPA) [23] - a chacteristic polynomial defined by the
Sturm sequence is used in order to calculate selected (by the user) eigenvalues of (5). This
is also anew algorithm, which uses quick binary search [23] for determination of the inter-
val where characteristic polynomial changes its sign. Instead of applying the bisection
method (applied in SMDA), we approximate the characteristic polynomial by its Padé

approximant [I/17(x) [24] on the interval <e,, 5> and then we find eigenvalue as a zero of
the approximant.

Improved Sturm-Martin-Dean algorithm (ISMDA) [23] - selected (by the user) eigenva-
lues of pentadiagonal matrix (6) are calculated by means of the Sturm-Martin-Dean

sequences and negative-eigenvalue Martin-Dean theorem [25],
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Lindberg algorithm (LA) [16] - the second derivative in SODSE is approximated by
the Pade approximant

$2

0

nfe?)-L —2 —
1+ 812

k)

1 .
=
which allows us to convert (7) into a matrix eigenproblem

AW NP = ed ®)

with a quasi-symmetric tridiagonal matrix [19] A“” the obtained eigenproblem (8) is
further analysed by means of the Sturm sequences (described above); eigenvalues are
found by the bisection method.

Modified Lindberg algorithm (MLA1) [23] - a characteristic polynomial and its derivative
given by the Sturm sequences are used for derivation of selected eigenvalues of algebraic
eigenproblem (7); the eigenvalues are found by the Newton-Raphson method.

Modified Lindberg algorithm (MLA2) [23] - a characteristic polynomial and its derivative
given by the Sturm sequences are used for derivation of selected eigenvalues of algebraic
eigenproblem (7); the eigenvalues are found by the secant method.

Improved Lindberg algorithm (ILA) [23] - a characteristic polynomial defined by the
Sturm sequence is used in order to calculate selected eigenvalues of (7). This new algo-
rithm is worked out by us and uses also quick binary search for detenujnation of the inter-
val where characteristic polynomial changes its sign. Instead of applying the bisection
method, we approximate the characteristic polynomial by its Padé approximant [1/1] (x)
[24] on the interval <, f8,>, and then find an eigenvalue as a zero of Padé approximant.
We have verified numerically that this method is accurate, very fast and the most efficient
among implemented algorithms.

Guardiola-Ros algorithm (GRA) [15, 23] - for a given potential energy an algebraic
eigenproblem (7) is solved using the Padé approximant

(3/2](57) = L. 61+ 496%/276 + 79 6" /289%0)
h* 1 +6§2/23+4354/3220

>

as approximation of second derivative in (1). The obtained dense algebraic eigenproblem
is solved by means of standard numerical routines [18-21],
Now let us present briefly an algorithm for calculation of eigenvectors corresponding to

a given eigenvalue. In our AMSSE program we have implemented algorithm proposed by Dy,
Wu, Spratlin and Zheng in [27, 28] (see also [11, 23, 25]) and called further in the paper
DWSZ algorithm, which allows to calculate eigenvector in the following steps:

EV1. Thei-th eigenvalue ¢, is computed by means ofthe algorithms (1-5) described above.

EV2. Two sequences of numbers are calculated:
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EV3. We place at pivoting coordinate xny,

PO(x,) = 7 =1 (%)

and we calculate the rest of coordinates of the i-th eigenvector using formulae
?’,fi):—bkA§(+) Y’,ff)l, k=m+1, m+2, m+3,...,N (9d)
iy,ff):—kaAi_)' k(?[, k=m-1, m-2, m-3,...,1 (%9¢)
EV4. The magnitude of expression

() _ (1) () (i
nll - bm. ‘lgn,— 1 * (a,,,_ '9,) P b B_U”

m m+ 1 Tmel

(9)

is calculated.

(i)

Now the main problem is connected with correct index m for which x4, is of order of a

machine epsilon. In order to find an optimum index, the AMSSE program searches for the

(t)|

index m’' for which magnitude |¢,"”| is minimal. We have verified numerically, that this way

'

of calculations is very efficient and stable. Taken m = m' components of eigenvector are

computed according to (9d-f).

4. COMPUTING CAPABILITIES OF AMSSE PROGRAM

The main purpose of our efforts was to create an universal, very efficient tool working
under control of Windows 9x/NT/2000 systems for solving one-dimensional stationaiy Schro-
dinger equation, simple in use due to clear graphic user interface. We placed a special em-
phasis on different methods of inserting the potential energy into the computing environment
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(with formulae, graphically - with the help of mouse, or by means of data tables) as well as on
comfort, efficiency and high computation precision.

The AMSSE program has been created using Delphi. It is universal tool giving a user

possibility of solving stationaiy Schrodinger equation with any type and shape of one-dimen-

sional potential wells. The AMSSE program has numerous advantages making it very efficient

scientific and didactic instrument in the courses on quantum mechanics and physics of low-di-
mensional systems. The advantages making this program outstanding are:

Graphical interface - the AMSSE program works under control of Windows 9x/NT/2000
operating systems. An intuitive arranging of control elements makes all operations easy
and enables of a quick modification of all parameters (even to beginning user). Permanent
visual control of a computations process and immediate stopping it at any time without any
loss give a user a satisfaction of full control over the program. Graphical presentation of
results on results on a display screen makes working with the program comfortable and easy.
Full integration with an operating system - the AMSSE program realizes OLE server
function, which makes it possible to access to its computational functions from other
Windows programs. Multitasking and clipboard services make data exchange with other
applications fast and easy.
Co-operation with Microsoft Office gives a simple way of using the computational results
in user's own publications.
Numerous set of solving procedures and methods allow us to find eigenvalues with user's
specified precision, and to compare results obtained by different algorithms and methods.
Unusual efficiency of computations achieved by far-reaching algorithms.
Flexibility in methods of defining the potential shape. The potential energy can be defined:

« by formula;

e as a function graph drawn on the screen with mouse;

« by imported from MS Excel.
Built-in compare functions allow us to test and verify an influence of the potential shape
or magnitudes of parameters on eigenvalues and eigenvectors.
Capability of stopping computations in any moment and saving the results allows us to
continue the work next time. It is possible to save the whole worksheet or only eigen-
values, potential or eigenvector.
Quick and easy parameter modification, that concers:

 potential energy,

* integration range,

e computation precision.
Simple and natural way to supply units and whole formulae. User can apply popular eV
(electronvolts) and nanometers. A few basic physical constants are available and formulae
could be entered in pure book-like form.
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The features specified above make the AMSSE program very useful tool for scientists and
nanotechnologists, as well as for stutends.

5. AMSSE PROGRAM GRAPHICAL INTERFACE

In this section we describe briefly main components and principle of the AM SSE program.
Figure 1 presents a short description of the main window of the program.
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parameters modification
mass 100640000 2 ma}.
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Fig. 1. Main window of the AM SSE's graphical interface

To start computations, one needs to perform a few steps shown below in Fig. 2.

The numerical solution procedure of SODSE (1) with the help of the AMSSE program
consists of a few steps: () The potential energy is entered; (1) Magnitudes of parameters are
defined; (Il11) Selected eigenvalues are calculated by selected algorithm; (1V) Normalized
eigenvector corresponding to indicated eigenvalue is computed and displayed.
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Fig. 2. Computational steps, which a user of the AM SSE program has to execute in order to solve SODSE

6. TESTING OF THE NUMERICAL PROCEDURES

The AMSSE program is a universal program which has neither possibility of measuring
computation time, nor tools for comparing its output with analytical results. Despite this,
extensive tests with the help of advanced tools has been performed in order to determine
optimum application range of each implemented method for various classes of potentials.
Numerical results were compared with analytical ones for selected analytically solvable
problems.

Because a large number of parameters for the tested methods and potentials, the testing
procedure had to be automated. One of the testing tools is PTEST1 program, which calls
procedures from the AM SSE program and compares accuracy and efficiency of the algorithms
for a given number of grid points N. It estimates the optimum N for each algorithm as well.
PTEST1 performs tests for:

1. the parabolic potential (quantum harmonic oscillator),

2. theradial equation for the Coulomb potential (hydrogen atom),
3. the Morse potential,

4. the Konwent potential (symmetric double-well).
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Test results are displayed on the screen (an example is shown in Table I).

Wider range of tests can be performed using Visual Basic macros contained in a special
worksheet written for Microsoft Excel. Their results are displayed in the form of graphs and
tables without any user's action.

For the testing purposes, we have defined the efficiency coefficient (EC) as

1

yYachieved accuracy - (execution_time_in_ms)

EC = (10)

The tests consist of two steps, which allows us to estimate a true performance of each
method:

1. Determination of the maximum accuracy for a given number of grid points N (by per-
forming the calculations with full hardware precision - about 15 significant digits) and
comparison the three lowest eigenenergies with analytical results,

2. Measurement of the computation time for the accuracy determined in the previous step.

Table|. Exampleresults from the PTEST 1 application
for the harmonic oscillator potential

Method’s Execution time Accuracy  Efficiency N

name [ms]
MSPA 66 2.079E-06 10.5 4000
SMDA 121 9.150E-06 2.7 2000
LA 82 2.185E-08 82 500
MLAL1 193 4.171E-12 2537 4000
MLA2 187 4.057E-12 2655 4000
ILA 143 4.056E-12 3473 4000
S.A. 428 3.322E-05 0.41 1000
ER 98 5.485E-05 1.4 2000
ISMDA 110 4.787E-08 41 500
GRA 99 3.070E-12 5765 100

In the case of the harmonic oscillator potential, the Guardiola-Ros algorithm appears to be
the most efficient one.

The form of the potential energy function is essential for the achieved accuracy. Five
different potentials, representing typical cases and giving wide spectrum of behaviour of the
algorithms, have been selected for testing. All of them are binding potentials (with local
minima) and have one-dimensional form. They are briefly described below.

6.1. Quantum harmonic oscillator

Eigenenergies in a parabolic well are equally spaced (cf., Fig. 3), according to the
formula
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Fig. 3. The graph of the oscillator potential with eigenenergies and the ground state wave function,
generated by the AMSSE program
6. 2. Three-dimensional Coulomb potential

It is a potential of Ur type, which can be reduced to one-dimensional form [1] due to its
spherical symmetry. This problem corresponds to a hydrogen atom and the Wannier-Mott
exciton (in solid state physics). Its one-dimensional form reads

Wi(l+1)  e?
2mex2 471'£0x’

Mx) =

where e is the elementary charge, m, is the electron mass and | is the orbital angular mo-
mentum quantum number. The first term in the potential energy is connected with particle's
angular momentum. The eigenvalues are

E-_ L™ et
2 2.2 .2 )
n*32 g &
Two cases have been tested separately:
e | =0 — apotential with a - 1/x singularity at x = 0, which makes the computation difficult
(Fig. 4a)
« | =2— potential with aminimum and a singularity of +I/x* type (Fig. 4b)

[}k

(a) (b)

Fig. 4. The graph of the Coulomb potential [(a) | = 0; (b) | = 2] with eigenenergies and the wave
functions of the lowest states, generated by the AMSSE program
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6. 3. Morse potential

This potential has been selected due to its application in physical chemistry [1], It has

the form
2

v=v, (1-e =),

and its eigenvalues are
ah

J2m VO'

The Morse potential, its eigenenergies and the ground state wave function computed by

A-2n+ 1)
4

where 4=

>

~——

E,,:A-((zm 1)-

the program are shown in Fig. 5.

Fig. 5. The graph of the Morse potential with eigenenergies
and the ground state wave function, obtained with the AMSSE program

6. 4. Konwent potential (double-well Morse potential)
Because the simplest symmetric double-well potential - anharmonic oscillator of
the a¢ + bx* type - is not solvable analytically, the Konwent potential [29-32], which has

a simple form, has been used instead:
2

B
25+ 1

V(X)ZM'(2S+ 1)2-( cosh(w-x)—l)
8m,

For some values of S and B there exist analytical solutions. In the test, value B = 0.04 was

used, and Swas equal to 1; then

9
E:(ﬂ"h)z.lJr(_Bi) - l+B2],
° 2m, 4 \2 4
5 2
E:(a-m—.L(E) ,
! 2m, 4 2

2
E’:(“'%’)z- l+[_§_j + —1—+B2].
: 2m, 4 2 4

The V(x) graph is shown in Fig. 6.
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Fig. 6. The graph of the Konwent potential with eigenenergies
and the ground state wave function, obtained with the AM SSE program

6. 5. Sources of errors in numerical algorithms

Opposite to the approximate analytical methods of solving the Schrédinger equation,
numerical methods are universal and, if properly applied, can quickly give accurate results.
Analytical solutions often require great experience and intuition; incorrect assumptions can
lead to significant errors. Below we discuss the influence of: (1) number of grid points N,
(2) selected method of numerical approximation of the second derivative, (3) width I=|b-a]|
of the integration range, on the quality and reliability of numerical results. As the measure of
accuracy we take the relative error

SE = AE ~ AE — x Eexact B Enumerical !
E

exact E, numerical numerical

In Figures 8 and 9, we present dependences of accuracy defined above (-log dF, right
scales) and efficiency EF defined by (a) (left scales) on the number N of grid points, for
different algorithms. We point out, that Figs. 8 and 9 correspond to a harmonic oscillator
potential and to the Coulomb potential (/ = 2), respectively.

As we can see, both accuracy and efficiency increase with the increasing N, reach their
maxima for some N = N, and then drop down.

For several methods, we estimated maximum accuracy, which can be theoretically achie-
ved for given value of N. Our estimation is shown in Fig. 7. Let us note the linear dependence

of numerical error on N. One can see that there is no sense in infinite increasing of V.

17

=
N

Three-point
and Lindberg
methods

o o
E o
Significant digits

Five-point
method

-
w

100000 10000 N 1000 100

Fig. 7. Estimated possible magnitudes of numerical accuracy for three-point and five-point methods

The Guardiola-Ros algorithm needs separate analysis (Figs. 10 and 11), because it in-
volves operations on dense matrices instead of band ones. Therefore, the quadratic depen-
dence of numerical error on N should be observed.
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Fig. 8. Accuracy and efficiency as a function of the number of grid points N for computational methods

in case of harmonic oscillator potential
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Fig. 9. Accuracy and efficiency as afunction of the number of grid points N for computational methods
in case of Coulomb potential (I = 2)
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Significant digits

1000,00 N 100,00 10,00

Fig. 10. Numerical results for Guardiola-Ros method with indicated Padé approximants
of the second derivative operator for the harmonic oscillator potential
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Fig. 11. Numerical results for the Guardiola-Ros method with indicated Padé approximants
of the second derivative operator for the Coulomb potential (1=1)

6. 6. Influence of the second derivative approximation on the accuracy

In the AMSSE program, we have applied four basic schemes of the second derivative

approximation:

1. Three-point formula (3), accuracy O(h?) [22];
2. The Lindberg method (8), accuracy O(h*) [16];
3. Five-point formula (4), accuracy O(h*) [22];
4. The Guardiola-Ros method with [3/2] Padé approximant (7), accuracy O(h'% [15],
Grid number dependence of the achieved accuracy for methods 1-3 are depicted in Figs.
12 and 13.
e . B eI T
R ——Three-point 14
——Lindberg :3%’
-------------- TFvepont  |ls §
----------------------------- 6 =
--------------------------- 4 5
(7]

100000 10000 N 1000 100 10

Fig. 12. Test results for harmonic oscillator potential
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Fig. 13. Test results for Coulomb potential (/ = 0)

The Guardiola-Ros method needs separate discussion, because with the increasing N
the execution time rapidly grows. Despite, G-R method is specially precise for small N and
smooth potentials; for singular potentials the value of N, needed to obtain required accuracy,
increases rapidly.

On the above graphs, the linear dependence of the number of significant digits on
the logarithm of N can be clearly seen, up to the maximum accuracy of given method. Because
the number of significant digits is equal to -logdE, the dependence of 0F on N is of power
type and the relation

-log(8E) = a-log(N) +b,
isfulfilledatlinearsegmentsofeachcurve;inotherwords, 8 E=10"- N

Values of a and b depend on the selection ofthe second derivative approximation and on
the potential energy function. The comparison results, collected in Table II, are interesting.
For all tested potentials, the accuracy of three-point, Lindberg, and five-point methods is
described by the formula

O0F=C-N ",
where C is a potential-dependent constant. We point out that a = m (cf. Table 1I), what means
that the obtained numerical results are consistent with the order of second derivative

approximation (its accuracy is O(4")).

Table II. Linear approximation coefficients for the accuracy of numerical algorithms
Potential Method m a B
Harmonic Th'ree-p(?int 2 1.96 -1.388
oscillator Flye-pomt 4 3.93 -3.201

Lindberg 4 4.00 -2.991

Coulomb Threc—p(?int 2 2.00 -2.054
1=0) Fﬁ/e—pomt 4 3.88 -4.677
Lindberg 4 4.00 -4.764

GRA [3/2] 10 10.0 -8.471

Harmonic GRA [1/1] 4 3.96 -2.907
oscillator GRA [1/3] 8 7.64 -6.514
GRA [3/1] 8 7.85 -6.503

GRA [3/2] 10 6.3 -8.232

Coulomb GRA [1/1] 4 4.07 ~4.943
(=1) GRA [1/3] 8 6.8 -9.334
GRA [3/1] 8 6.5 -8.768
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6. 7. Influence of the integration interval on the numerical results

To take advantage of the implemented numerical algorithms, one has to be conscious of
the assumptions made. The most important ones are the boundary conditions, which imply
that the wave function Y(a) = ¥(b) = 0 and ¥(x) = 0 outside the integration interval. From
the physical point of view it means that we put infinite potential barriers at x = g and x = b.

The problem is particularly important for finite-value potentials defined on infinite
intervals. The integration interval should be then chosen carefully in such a way, that the in-
fluence of artificial infinite barriers could be neglected. One cannot simply extend the inte-
gration interval in an uncontrolled way, because of the side effect of such an action (in-
creasing N or & above their optimal values) which would decrease accuracy and/or make
the computations significantly slower.

Let us note that in the case of singular potentials (e. g., Coulomb potential with / = 0), the
imposed boundary conditions result in a limited number of eigenvalues (the number of
eigenvalues should be infinite); the highest eigenvalues are computed with lower precision.

The tests have shown, that in most cases the problem of integration interval selection can
be solved. As an example, in Fig. 14 we present the results obtained for the Morse potential

with improperly and properly chosen values of @ and b.

(@ (b)

Fig. 14. (a) Calculated eigenenergies (E, = 1.0013E-2; E, = 2.8486E-2; E, = 4.4904E-2). The accu-
racy is 3.7E-3 (3 significant digits); the integration interval has not been chosen properly, (b) Calculated
eigenenergies (E, = 9.999999999999E-2; E, = 2.841995766068E-2; E, = 4.473319220241E-2).
The accuracy is 1.4E-13 (13 significant digits); the integration interval has been chosen properly.
The wave function ofthe second eigenstate is also shown

A particle mass was chosen in such that the lowest eigenenergy takes the value 0.1.
Parameter a (left integration limit) influences calculated eigenenergy and eigenfunction
accuracy. A behaviour of the computed eigenfunction near the boundaries is a signature ofthe
proper choice of the integration limits. If the potential energy values are finite the
eigenfunction tends to zero asymptotically. Such behaviour is shown in Fig. 15a, and
corresponds to a correct choice of the integration range. The boundary condition V(a) = e can
substantially modify the behaviour of the computed wave function near the point x = a, when

a is chosen incorrectly. This case is depicted in Fig. 15b.
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(a) Properly chosen integration range | (b) Improperly chosen integration range
L
5
T —
_-=-‘\“'-__ -
\"'l;._ e
__-*—-—h‘_
T

Fig. 15. Behaviour of the eigenfunction near the left integration limit in the discussed cases

6. 8. Other important results of the tests

Many test results have already been presented along with the discussion of accuracy.
However, for the practical point of view, the most important are the results obtained with the
help of the testing worksheet mentioned at the beginning of Section 6. The results are
available to the user in two forms:
¢ Graphical - as a three-dimensional graph showing the time needed by a given method to

achieve the required accuracy of determination of a single eigenvalue,

e Tabular - as a collection of call parameters and corresponding accuracy.

The obtained graphs and tables are shown in the Appendix in Figs. A1-A5. For each
method and each required accuracy, there are shown: number N of grid points needed (upper
sub-row) and the accuracy actually achieved (lower sub-row).

The input data for all algorithms and for all test potentials were the same. The integration
limits were properly chosen to eliminate errors (cf., Sec. 6.7). The testing process was
automated. This way we obtained comprehensive results, which allow:

1. Comparison of the accuracy and efficiency of the implemented algorithms for the basic
classes of potentials,
2. Selection of the most accurate, fastest and stable method and the optimal value of N for

a given practical problem (by fitting it into one of the classes) and, therefore, shortening

the time needed for its solution.

7. EXAMPLES OF AMSSE PROGRAM USAGE

The AMSSE program user is able to:

« perform complete and accurate calculations for any single or multiple potential well, given
by a formula or drawn with mouse, and to interpret experimental results or verify
analytical solutions,

« analyse an influence of potential profile on the energy spectrum and wave functions by
immediate comparison of the results before and after the change,

« perform series of calculations for a varying parameter in the formula describing potential
energy, and to study its influence.

Below we present three examples of results obtained with the AM SSE program.
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7.1. Quantum anharmonic oscillator

The double potential well is described by the formula V(x) = ax* - b + cx. If ¢ = 0,
the potential is symmetric and the lowest eigenergies can be quasi-degenerated (their values
can differ less than machine epsilon), cf., Fig. 16a. Increasing of ¢ (what corresponds to non-
symmetric double well) leads to removal of the double quasi-degeneracy (Figs. 16b-d).

a) b)
— — || ;
4 I I— T
i} r | 3= - —r
1 i f [ \ i
| / \\\ l’ il / \\ !'
| / \ 1 / !
| 7 N B b / \ ='
v 7 A\ ] 7 :
4 / . i _ / !
A i \ / \ / \ /
7 \ ] ./ N
\_ / \__/ ./ \ /
N N 7
c) d)
H ] ] T
1 1 ¥ S
| — | 1= . i
N L |3= 2 - 1
i 7 \ I | 1= 7 5 ;
i 7 AN N i SO W I
B / A\ { - : N\ i
‘.. / N ,, ‘. /’ Y 7
i ! \ 'I "‘X 7 \ ]
{ N i 7 7 Y i
\__L AN A B N/
7 = A
v

Fig. 16. Graphs of the anharmonic oscillator potential with calculated eigenergies

7. 2. Single and double finite rectangular quantum well

With the AMSSE program, we have calculated eigenergies and eigenfunctions of charge
carriers with effective-mass of 0.07m. in the rectangular potential well 0.75 eV-deep and
10 nm-wide (cf., Fig. 17a), and in the same well with a 2.5 nm-thick barrier in the middle (cf.,
Fig. 17b). Let us note, that in the double-well case the eigenstates appear in quasi-degene-
rated-pairs.

Parameters used in the example correspond to GaAs/AlGaAs semiconductor heterostruc-
tures.

a) No barrier b) Barrier width 2.5 nm
1
M il
anl i
N I
= r

Fig. 17. Single and double rectangular quantum well
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7. 3. Band structure of one-dimensional solid

We have calculated eigenvalues and eigenfunctions of electrons moving in a periodic
potential given by

V(X) = Vo - | sinax| .

Theresult are presented in Figs. 18 and 19.

BRI

Fig. 18. Band structure and an example wave function in one-dimensional crystal

() )
Fig. 19. The electronic wave function in a perfect lattice (a) and in lattice with an impurity
or point defect, which causes electron localization (b)

8. MATRIX REPRESENTATION OF THE EFFECTIVE-MASS EQUATION

Physical properties of low-dimensional semiconductor heterostructures (e. g., quantum
wells and superlattices) are commonly interpreted theoretically within the effective-mass
theory [11], In this context the main task is aimed towards an accurate solution of one-
dimensional effective-mass equation for envelope function

2
e e (OL OB a
with the charge carrier mass m being a function of x coordinate (the OX axis is assumed
parallel to the growth direction of the heterostructure).

In order to discretize the above equation, we introduce the second grid of points, shifted

by h/2 relative to the main grid:
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Applying three-point formulafor the first derivative twice, we obtain for each x;

2
_[ I 5”-\1“( L1 )%+ 1 S,,M}wkzh V- -0

j P
;1 M vy M M1 ﬁ

Therefore, the effective-mass equation is reduced to an eigenproblem for a symmetic tri-
diagonal matrix M= trid(1/m; _ 1, Vmy -+ Umijynt 202V 3%, -1/m ;. ). This discrete
form of (11) satisfies continuity conditions for the envelope function ¥ and (1/m)d ¥/dxin the
limit of 2 - ¢ [11].

Eigenvectors of Mt can be found with DWSZ method (9a-f). Some results of accuracy test
for the discrete effective-mass equation applied to several semiconductor hetero-structures
have been published [11]. A simple way of taking into account the conduction band non-
parabolicity effects is also presented there.

9. FINAL CONCLUSIONS

The AMSSE program we have created and described in this paper is an efficient numerical
tool for solving stationary one-dimensional Schrodinger equation. Its efficiency and high ac-
curacy result from the use of algebraic matrix approach, which allows us to apply advanced
algorithms worked out in numerical linear algebra.

The main capabilities of the AMSSE program can be summarized as follows:

1. It is a stable, fast and efficient computational platform for solving stationary one-
dimensional Schrodinger equation with arbitrary analytical or numerical potentials.

2. It allows to calculate and to display in its graphical interface a large number of eigenvalues
and eigenvectors at the same time.

3. It has a lot of different efficient algorithms built-in, which allow us to compare results
obtained with different methods.

4. It allows the user to select the numerical algorithm most suitable for considered practical
problem. It allows us also to choose an optimum number of grid points for the required
accuracy.

5. It can be applied for scientific purposes in the field of quantum mechanics and low-
dimensional physics.

6. It fully uses capabilities and functions of Windows operating system, which makes it a
user-friendly and comfortable tool.

7. It is avaluabletool for physicists, chemists, engineers and nanotechnologists.

In order to obtain the AM SSE program, please contact its authors.
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Appendix - comprehensive test results

For each method and for each required accuracy, number N of grid points needed (upper
sub-row) and the accuracy actually achieved (lower sub-row) are shown. Detailed description

can be found in Section 6.
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Fig. Al. Test results for the harmonic oscillator potential
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Fig. A4. Test results for the Coulomb potential (I = 0)
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Fig. A5. Test results for the Coulomb potential (I = 2)
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