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A b s t r a c t : An implementation of numerical a lgebraic methods of s o l v i n g a stationary one-dimensional 

Schrödinger equation (SODSE) is presented. In the f r a m e w o r k of the proposed approach, S O D S E is 

conver ted into an algebraic e igenva lue problem, which represents a discrete vers ion of studied problem 

on an equal ly spaced grid. The A M S S E program written in Delphi calculates e igenvalues and corres-

p o n d i n g eigenvectors by means of various methods and algorithms described here. It is an e f f ic ient and 

va luable computational environment, which can be used in science and nanotechnology. Arbi t rary poten-

tials can be introduced into A M S S E program in the form of analytic f o r m u l a e or data tables, or with the 

mouse . T h e user-fr iendly graphical interface takes advantage of ful l capabil it ies of the W i n d o w s ope-

rat ing system. Main program features are described. Ef f ic iency and accuracy of d i f ferent numerical algo-

rithms are comprehensively tested and compared. Factors inf luencing accuracy are discussed. Examples 

are w i d e l y presented. Matrix approach extension to the case of an ef fect ive-mass equation is mentioned. 

1. I N T R O D U C T I O N 

A fundamental problem of nonrelativistic quantum mechanics [1-9] is connected with 

solution of stationary one-dimensional Schrödinger equation (SODSE) 

where V(x) is the potential energy and m denotes the particle mass. 

In general, SODSE cannot be solved analytically (exact solutions are known for special 

cases of potential energy V(x), and discussed in standard quantum mechanics textbooks [1-9]). 

Therefore various numerical approaches have been proposed and applied [10-17], There exist 

different ways of solving SODSE numerically. These can be classified as follows: 

(A) Finite element methods - equation (1) is solved on a finite set of subintervals and the 

obtained solutions are matched; the most popular and familiar method, called transfer 

matrix method [3, 13], belongs to this group. 

(B) Variational Rayleigh-Ritz-Galerkin methods [1-3] - an approximation to the wave 

function Ψ is represented as a basis function superposition (chosen in a reasonable 

way), and, from variational principle, the secular equation is derived and diagonalized 

[18-21], which gives approximations to eigenenergies of (1). 

(C) Finite-difference methods, called also grid methods: 

(CI) Shooting methods [12-13]; 

(1) 
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(C2) Matrix (or global) methods [10, 11, 15-17], which convert the Schrödinger 

equation (1) into an algebraic eigenproblem [18-21], 

Both (C1) and (C2) methods are based on approximation of the second derivative of 

the wave function in (1) by finite-difference quotients [22], 

The main difficulty in applying finite element (A), variational (B), or shooting (C1) 

methods is selection of a "good initial guess" for eigenvalues, eigenvectors or complete set of 

basis function. In this sense (A), (B) and (C1) methods are not universal. Therefore we prefer 

matrix approach (C2), which has the following advantages over the others ones: (1) no initial 

guess for eigenvalues or eigenvectors is needed to start computation; (2) neither iteration, mat-

ching nor relaxation procedure is employed; (3) one can use the most efficient and advanced 

computer algorithms worked out in numerical linear algebra [18-21]. 

In subsequent sections of this paper we describe: 

(1) Finite difference approach allowing approximation of the second derivative in the 

Schrödinger equation (1) by central difference formulae [22]; 

(2) Matrix representations of SODSE on an equally spaced one-dimensional grid; 

(3) Numerical algorithms implemented in our computer program called AMSSE [23] 

(Algebraic Methods of Solving Schrodinger Equation), written in Delphi; 

(4) Main the AMSSE program capabilities; 

(5) Graphical interface; 

(6) Discussion of accuracy and efficiency of the algorithms implemented in the AMSSE 

program; 

(7) Selected results of numerical calculations obtained by means of the AMSSE program; 

(8) Matrix approach extension to the case of an effective-mass equation with arbitrary 

spatial electron effective-mass dependence. 

The presented approach is an intuitive and very efficient technique useful for physicists 

and engineers working in solid state physics area, especially in physics of low-dimensional 

structures. 

2. DISCRETIZATION PROCEDURE AND MATRIX EIGENPROBLEM 

The discretization procedure is realized by introducing the grid of points 

xi=a+i·h, i = 0 , 1 , 2 , . . . , N + 1, (2) 

where h= x i + 1 - xi = (b - a)/(N + 1), N is a sufficiently large natural number, and <a, b> is 

the interval in which we solve SODSE. We choose the boundary conditions as follows: Ψ(a) 

~ Ψ(b) = 0 which, from the physical point of view, means that V(a) = V(b) = (i, e., we place 

infinite barriers at the ends of interval <a, b>). These boundary conditions ensure that 

the matrix of the algebraic eigenproblem will have a band form. 

Next, the central finite-difference formulas are applied in order to approximate the second-

derivative in (1) at x = xi point which can be taken as [22] 
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(3) 

(4) 

and elements of matrix are given by 

is the dense symmetric matrix, D is the diagonal matrix where. 

(7) 

known exactly [15]. In the framework of this approach the Schrödinger equation (1) is con-

verted into an algebraic eigenproblem 

(the upper index T denotes the transposition). 

The most general approach to the SODSE solution problem in the finite-difference 

schemes has been proposed by Gaurdiola and Ros [15], In this method the second derivative 

operator is represented by the Padé approximant [n/m] 

the tridiagonal matrix = t r id( l , - 2 , 1), the eigenvalues and eigenvectors of which are 

[24], being an operator function of 

point out that denotes a one-column matrix, i. e., 

where MP is a symmetric pentadiagonal matrix which can be written also in abbreviated form; 

MP = pentad ( c i , b i , a i , b i + 1 c i + 1 ) = pentad (1, - 16 , 30 + 12 

c i+ 2) is the i-th row of the pentadiagonal matrix, We 

where MT is the symmetric tridiagonal matrix which we write in an abbreviated form MT = 

t r i d ( b i , a i , b i + 1 ) = t r i d ( - l , 2 + (x i), - 1 ) (note that (b i,a i,b i+1) denotes the z-th row of the 

ti idiagonal matrix and the tilde over a symbol indicates corresponding renormalization), or 

(5) 

(6) 

Let us note that (3) and (4) are three- and five-point central finite-difference formulae, res-

pectively. 

Now, using formula (3) or (4), for each grid points (2) we can rewrite differential equation 

(1) as an algebraic eigenvalue problem 

(x i ) , - 1 6 , 1); (ci, bi, ai, b i + 1 , 
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(7b) 

and 

denotes the j-th eigenvalue of the tridiagonal symmetric N x N matrix = trid ( l , - 2 , 1). 

This way we have transformed the original differential equation (1) into an algebraic 

eigenvalue problem defined by (5), (6) or (7). Values of ε, for which nonzero solutions of 

quations given by (5), (6) or (7) exist, are called eigenvalues, and the corresponding solutions 

are the eigenvectors. So, energy levels and wave functions occurring in SODSE is reduced to 

a computation of eigenvalues and eigenvectors of tridiagonal (5), pentadiagonal (6) or dense 

(7) symmetric matrices. 

3. NUMERICAL ALGORITHMS IMPLEMENTED IN AMSSE 

We enumerate and describe briefly the routines and algorithms implemented in the 

AMSSE program [23] for computation of eigenvalues and eigenvectors of algebraic eigenpro-

blems (5), (6) or (7). 

1. Standard algorithm (SA) - this subprogram uses EISPACK routines TQL2 or TQLRAT 

[18-21] (based on QR or QL decomposition); note that SA calculates all eigenvalues and 

eigenvectors of the tridiagonal matrix (5). 

2. Sturm-Martin-Dean algorithm (SMDA) [11, 25, 26] - selected (by the user) eigenvalues 

of (5) are calculated by means of the Sturm-Martin-Dean sequences, applying a bisection 

procedure. The approach is equivalent to the negative-eigenvalue theorem called also the 

Sylvester theorem [26], A very efficient new algorithm based on binary search has been 

applied. 

3. EISPACK routine (ER) - the subprogram uses EISPACK routine [21], which calculates 

selected number of eigenvalues MT in (5) by the bisection method. 

4. Modified Sturm-Padé algorithm (MSPA) [23] - a chacteristic polynomial defined by the 

Sturm sequence is used in order to calculate selected (by the user) eigenvalues of (5). This 

is also a new algorithm, which uses quick binary search [23] for determination of the inter-

val where characteristic polynomial changes its sign. Instead of applying the bisection 

method (applied in SMDA), we approximate the characteristic polynomial by its Padé 

approximant [ l / l ] (x ) [24] on the interval <α i, β i> and then we find eigenvalue as a zero of 

the approximant. 

5. Improved Sturm-Martin-Dean algorithm (ISMDA) [23] - selected (by the user) eigenva-

lues of pentadiagonal matrix (6) are calculated by means of the Sturm-Martin-Dean 

sequences and negative-eigenvalue Martin-Dean theorem [25], 
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6. Lindberg algorithm (LA) [16] - the second derivative in SODSE is approximated by 

the Pade approximant 

further analysed by means of the Sturm sequences (described above); eigenvalues are 

found by the bisection method. 

7. Modified Lindberg algorithm (MLA1) [23] - a characteristic polynomial and its derivative 

given by the Sturm sequences are used for derivation of selected eigenvalues of algebraic 

eigenproblem (7); the eigenvalues are found by the Newton-Raphson method. 

8. Modified Lindberg algorithm (MLA2) [23] - a characteristic polynomial and its derivative 

given by the Sturm sequences are used for derivation of selected eigenvalues of algebraic 

eigenproblem (7); the eigenvalues are found by the secant method. 

9. Improved Lindberg algorithm (ILA) [23] - a characteristic polynomial defined by the 

Sturm sequence is used in order to calculate selected eigenvalues of (7). This new algo-

rithm is worked out by us and uses also quick binary search for detenu ¡nation of the inter-

val where characteristic polynomial changes its sign. Instead of applying the bisection 

method, we approximate the characteristic polynomial by its Padé approximant [1/1] (x) 

[24] on the interval <α i, β i>, and then find an eigenvalue as a zero of Padé approximant. 

We have verified numerically that this method is accurate, very fast and the most efficient 

among implemented algorithms. 

10. Guardiola-Ros algorithm (GRA) [15, 23] - for a given potential energy an algebraic 

eigenproblem (7) is solved using the Padé approximant 

as approximation of second derivative in (1). The obtained dense algebraic eigenproblem 

is solved by means of standard numerical routines [18-21], 

Now let us present briefly an algorithm for calculation of eigenvectors corresponding to 

a given eigenvalue. In our AMSSE program we have implemented algorithm proposed by Dy, 

Wu, Spratlin and Zheng in [27, 28] (see also [11, 23, 25]) and called further in the paper 

DWSZ algorithm, which allows to calculate eigenvector in the following steps: 

EV1. The i-th eigenvalue εi is computed by means of the algorithms (1-5) described above. 

EV2. Two sequences of numbers are calculated: 

which allows us to convert (7) into a matrix eigenproblem 

(8) 

with a quasi-symmetric tridiagonal matrix [19] A(q-s) the obtained eigenproblem (8) is 
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(9a) 

and 

EV3. We place at pivoting coordinate xm 

(9d) 

(9e) 

EV4. The magnitude of expression 

(9f) 

is calculated. 

Now the main problem is connected with correct index m for which μm

( i) is of order of a 

machine epsilon. In order to find an optimum index, the AMSSE program searches for the 

index m' for which magnitude |μm'

( i)| is minimal. We have verified numerically, that this way 

of calculations is very efficient and stable. Taken m = m', components of eigenvector are 

computed according to (9d-f). 

4. COMPUTING CAPABILITIES OF AMSSE P R O G R A M 

The main purpose of our efforts was to create an universal, very efficient tool working 

under control of Windows 9x/NT/2000 systems for solving one-dimensional stationaiy Schrö-

dinger equation, simple in use due to clear graphic user interface. We placed a special em-

phasis on different methods of inserting the potential energy into the computing environment 

and we calculate the rest of coordinates of the i-th eigenvector using formulae 

(9b) 

(9c) 
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(with formulae, graphically - with the help of mouse, or by means of data tables) as well as on 

comfort, efficiency and high computation precision. 

The AMSSE program has been created using Delphi. It is universal tool giving a user 

possibility of solving stationaiy Schrödinger equation with any type and shape of one-dimen-

sional potential wells. The AMSSE program has numerous advantages making it very efficient 

scientific and didactic instrument in the courses on quantum mechanics and physics of low-di-

mensional systems. The advantages making this program outstanding are: 

- Graphical interface - the AMSSE program works under control of Windows 9x/NT/2000 

operating systems. An intuitive arranging of control elements makes all operations easy 

and enables of a quick modification of all parameters (even to beginning user). Permanent 

visual control of a computations process and immediate stopping it at any time without any 

loss give a user a satisfaction of full control over the program. Graphical presentation of 

results on results on a display screen makes working with the program comfortable and easy. 

- Full integration with an operating system - the AMSSE program realizes OLE server 

function, which makes it possible to access to its computational functions from other 

Windows programs. Multitasking and clipboard services make data exchange with other 

applications fast and easy. 

- Co-operation with Microsoft Office gives a simple way of using the computational results 

in user's own publications. 

- Numerous set of solving procedures and methods allow us to find eigenvalues with user 's 

specified precision, and to compare results obtained by different algorithms and methods. 

- Unusual efficiency of computations achieved by far-reaching algorithms. 

- Flexibility in methods of defining the potential shape. The potential energy can be defined: 

• by formula; 

• as a function graph drawn on the screen with mouse; 

• by imported from MS Excel. 

- Built-in compare functions allow us to test and verify an influence of the potential shape 

or magnitudes of parameters on eigenvalues and eigenvectors. 

- Capability of stopping computations in any moment and saving the results allows us to 

continue the work next time. It is possible to save the whole worksheet or only eigen-

values, potential or eigenvector. 

- Quick and easy parameter modification, that concers: 

• potential energy, 

• integration range, 

• computation precision. 

- Simple and natural way to supply units and whole formulae. User can apply popular eV 

(electronvolts) and nanometers. A few basic physical constants are available and formulae 

could be entered in pure book-like form. 
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The features specified above make the AMSSE program very useful tool for scientists and 

nanotechnologists, as well as for stutends. 

5. AMSSE PROGRAM GRAPHICAL INTERFACE 

In this section we describe briefly main components and principle of the AMSSE program. 

Figure 1 presents a short description of the main window of the program. 

Fig. 1. Main window of the AMSSE's graphical interface 

To start computations, one needs to perform a few steps shown below in Fig. 2. 

The numerical solution procedure of SODSE (1) with the help of the AMSSE program 

consists of a few steps: (I) The potential energy is entered; (II) Magnitudes of parameters are 

defined; (III) Selected eigenvalues are calculated by selected algorithm; (IV) Normalized 

eigenvector corresponding to indicated eigenvalue is computed and displayed. 
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Fig. 2. Computational steps, which a user of the AMSSE program has to execute in order to solve SODSE 

6. TESTING OF THE NUMERICAL PROCEDURES 

The AMSSE program is a universal program which has neither possibility of measuring 

computation time, nor tools for comparing its output with analytical results. Despite this, 

extensive tests with the help of advanced tools has been performed in order to determine 

optimum application range of each implemented method for various classes of potentials. 

Numerical results were compared with analytical ones for selected analytically solvable 

problems. 

Because a large number of parameters for the tested methods and potentials, the testing 

procedure had to be automated. One of the testing tools is PTEST1 program, which calls 

procedures from the AMSSE program and compares accuracy and efficiency of the algorithms 

for a given number of grid points N. It estimates the optimum N for each algorithm as well. 

PTEST1 performs tests for: 

1. the parabolic potential (quantum harmonic oscillator), 

2. the radial equation for the Coulomb potential (hydrogen atom), 

3. the Morse potential, 

4. the Konwent potential (symmetric double-well). 
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Test results are displayed on the screen (an example is shown in Table I). 

Wider range of tests can be performed using Visual Basic macros contained in a special 

worksheet written for Microsoft Excel. Their results are displayed in the form of graphs and 

tables without any user's action. 

For the testing purposes, we have defined the efficiency coefficient (EC) as 

Table I. Example results f rom the PTEST 1 application 

for the harmonic oscillator potential 

In the case of the harmonic oscillator potential, the Guardiola-Ros algorithm appears to be 

the most efficient one. 

The form of the potential energy function is essential for the achieved accuracy. Five 

different potentials, representing typical cases and giving wide spectrum of behaviour of the 

algorithms, have been selected for testing. All of them are binding potentials (with local 

minima) and have one-dimensional form. They are briefly described below. 

6.1 . Quantum harmonic oscillator 

Eigenenergies in a parabolic well are equally spaced (cf., Fig. 3), according to the 

formula 

The tests consist of two steps, which allows us to estimate a true performance of each 

method: 

1. Determination of the maximum accuracy for a given number of grid points N (by per-

forming the calculations with full hardware precision - about 15 significant digits) and 

comparison the three lowest eigenenergies with analytical results, 

2. Measurement of the computation time for the accuracy determined in the previous step. 

(10) 



W. Salejda et al. 83 

and therefore it is an ideal case for testing. 

Fig. 3. The graph of the oscillator potential with eigenenergies and the ground state wave function, 

generated by the AMSSE program 

6. 2. Three-dimensional Coulomb potential 

It is a potential of 1/r type, which can be reduced to one-dimensional form [1] due to its 

spherical symmetry. This problem corresponds to a hydrogen atom and the Wannier-Mott 

exciton (in solid state physics). Its one-dimensional form reads 

where e is the elementary charge, me is the electron mass and l is the orbital angular mo-

mentum quantum number. The first term in the potential energy is connected with particle's 

angular momentum. The eigenvalues are 

Two cases have been tested separately: 

• l = 0 — a potential with a - 1/x singularity at x = 0, which makes the computation difficult 

(Fig. 4a) 

• l = 2 — potential with a minimum and a singularity o f + l / x 2 type (Fig. 4b) 

Fig. 4. The graph of the Coulomb potential [(a) l = 0; (b) l = 2] with eigenenergies and the wave 

functions of the lowest states, generated by the A M S S E program 
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6. 3. Morse potential 

This potential has been selected due to its application in physical chemistry [1], It has 

the form 

and its eigenvalues are 

The Morse potential, its eigenenergies and the ground state wave function computed by 

the program are shown in Fig. 5. 

The V(x) graph is shown in Fig. 6. 

Fig. 5. The graph of the Morse potential with eigenenergies 

and the ground state wave function, obtained with the AMSSE program 

6. 4. Konwent potential (double-well Morse potential) 

Because the simplest symmetric double-well potential - anharmonic oscillator of 

the ax2 + bx4 type - is not solvable analytically, the Konwent potential [29-32], which has 

a simple form, has been used instead: 

For some values of S and B there exist analytical solutions. In the test, value B = 0.04 was 

used, and S was equal to 1; then 
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Fig. 6. The graph of the Konwent potential with eigenenergies 
and the ground state wave function, obtained with the A M S S E program 

6. 5. Sources of errors in numerical algorithms 

Opposite to the approximate analytical methods of solving the Schrödinger equation, 

numerical methods are universal and, if properly applied, can quickly give accurate results. 

Analytical solutions often require great experience and intuition; incorrect assumptions can 

lead to significant errors. Below we discuss the influence of: (1) number of grid points N, 

(2) selected method of numerical approximation of the second derivative, (3) width l = | b - a | 

of the integration range, on the quality and reliability of numerical results. As the measure of 

accuracy we take the relative error 

Fig. 7. Estimated possible magnitudes of numerical accuracy for three-point and five-point methods 

The Guardiola-Ros algorithm needs separate analysis (Figs. 10 and 11), because it in-

volves operations on dense matrices instead of band ones. Therefore, the quadratic depen-

dence of numerical error on N should be observed. 

In Figures 8 and 9, we present dependences of accuracy defined above ( - l o g δE, right 

scales) and efficiency EF defined by (a) (left scales) on the number N of grid points, for 

different algorithms. We point out, that Figs. 8 and 9 correspond to a harmonic oscillator 

potential and to the Coulomb potential (l = 2), respectively. 

As we can see, both accuracy and efficiency increase with the increasing N, reach their 

maxima for some N = N m a x and then drop down. 

For several methods, we estimated maximum accuracy, which can be theoretically achie-

ved for given value of N. Our estimation is shown in Fig. 7. Let us note the linear dependence 

of numerical error on N. One can see that there is no sense in infinite increasing of N. 
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Fig. 8. Accuracy and efficiency as a function of the number of grid points N for computational methods 

in case of harmonic oscillator potential 
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Fig. 9. Accuracy and efficiency as a funct ion of the number of grid points N for computational methods 

in case of Coulomb potential (l = 2) 
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Fig. 10. Numerical results for Guardiola-Ros method with indicated Padé approximants 

of the second derivative operator for the harmonic oscillator potential 

6. 6 . I n f l u e n c e of the s e c o n d d e r i v a t i v e a p p r o x i m a t i o n on the a c c u r a c y 

I n the A M S S E p r o g r a m , w e h a v e appl ied f o u r b a s i c s c h e m e s o f t he s econd der iva t ive 

app rox ima t ion : 

1 . T h r e e - p o i n t f o r m u l a (3), a ccu racy O ( h 2 ) [22]; 

2 . T h e L i n d b e r g m e t h o d (8) , a c c u r a c y O ( h 4 ) [16]; 

3 . F ive -po in t f o r m u l a (4) , accuracy O ( h 4 ) [22]; 

4 . T h e G u a r d i o l a - R o s m e t h o d w i t h [3/2] P a d é a p p r o x i m a n t (7) , accuracy O(h10) [15], 

G r i d n u m b e r d e p e n d e n c e o f t he ach ieved accuracy fo r m e t h o d s 1-3 a re depic ted in Figs . 

12 and 13. 

Fig. 12. Test results for harmonic oscillator potential 

Fig. 11. Numerical results for the Guardiola-Ros method with indicated Padé approximants 

of the second derivative operator for the Coulomb potential ( l = 1 ) 
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Fig. 13. Tes t results for Coulomb potential (l = 0) 

The Guardiola-Ros method needs separate discussion, because with the increasing N 

the execution time rapidly grows. Despite, G-R method is specially precise for small N and 

smooth potentials; for singular potentials the value of N, needed to obtain required accuracy, 

increases rapidly. 

On the above graphs, the linear dependence of the number of significant digits on 

the logarithm of N can be clearly seen, up to the maximum accuracy of given method. Because 

the number of significant digits is equal to - l o g δ E , the dependence of δE on N is of power 

type and the relation 

- l o g ( δ E ) = a · l o g ( N ) + b , 

is fulf i l led at linear segments of each curve; in other words, δE= 10 -b · N -a. 

Values of a and b depend on the selection of the second derivative approximation and on 

the potential energy function. The comparison results, collected in Table II, are interesting. 

For all tested potentials, the accuracy of three-point, Lindberg, and five-point methods is 

described by the formula 

δE= C· N - m , 

where C is a potential-dependent constant. We point out that a m (cf. Table II), what means 

that the obtained numerical results are consistent with the order of second derivative 

approximation (its accuracy is O(hm)). 

Table II. Linear approximation coeff icients for the accuracy of numerical a lgori thms 
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6. 7. Influence of the integration interval on the numerical results 

To take advantage of the implemented numerical algorithms, one has to be conscious of 

the assumptions made. The most important ones are the boundary conditions, which imply 

that the wave function Ψ(a) = Ψ(b) = 0 and Ψ(x) = 0 outside the integration interval. From 

the physical point of view it means that we put infinite potential barriers at x = a and x = b. 

The problem is particularly important for finite-value potentials defined on infinite 

intervals. The integration interval should be then chosen carefully in such a way, that the in-

fluence of artificial infinite barriers could be neglected. One cannot simply extend the inte-

gration interval in an uncontrolled way, because of the side effect of such an action (in-

creasing N or h above their optimal values) which would decrease accuracy and/or make 

the computations significantly slower. 

Let us note that in the case of singular potentials (e. g., Coulomb potential with l = 0), the 

imposed boundary conditions result in a limited number of eigenvalues (the number of 

eigenvalues should be infinite); the highest eigenvalues are computed with lower precision. 

The tests have shown, that in most cases the problem of integration interval selection can 

be solved. As an example, in Fig. 14 we present the results obtained for the Morse potential 

with improperly and properly chosen values of a and b. 

Fig. 14. (a) Calculated eigenenergies (E0 = 1 . 0 0 1 3 E - 2 ; E1 = 2 . 8 4 8 6 E - 2 ; E2 = 4 . 4 9 0 4 E - 2 ) . The accu-

racy is 3 . 7 E - 3 (3 s ignif icant digits); the integration interval has not been chosen properly, (b) Calculated 

e igenenergies (E0 = 9 . 9 9 9 9 9 9 9 9 9 9 9 9 E - 2 ; E1 = 2 . 8 4 1 9 9 5 7 6 6 0 6 8 E - 2 ; E2 = 4 . 4 7 3 3 1 9 2 2 0 2 4 1 E - 2 ) . 

T h e accuracy is 1 . 4 E - 1 3 (13 s ignif icant digits); the integration interval has been chosen properly. 

The w a v e function of the second eigenstate is also shown 

A particle mass was chosen in such that the lowest eigenenergy takes the value 0.1. 

Parameter a (left integration limit) influences calculated eigenenergy and eigenfunction 

accuracy. A behaviour of the computed eigenfunction near the boundaries is a signature of the 

proper choice of the integration limits. If the potential energy values are finite the 

eigenfunction tends to zero asymptotically. Such behaviour is shown in Fig. 15a, and 

substantially modify the behaviour of the computed wave function near the point x = a, when 

a is chosen incorrectly. This case is depicted in Fig. 15b. 

corresponds to a correct choice of the integration range. The boundary condition V(a) = c a n 
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Fig. 15. Behaviour of the eigenfunction near the left integration limit in the discussed cases 

6. 8. Other important results of the tests 

Many test results have already been presented along with the discussion of accuracy. 

However, for the practical point of view, the most important are the results obtained with the 

help of the testing worksheet mentioned at the beginning of Section 6. The results are 

available to the user in two forms: 

• Graphical - as a three-dimensional graph showing the time needed by a given method to 

achieve the required accuracy of determination of a single eigenvalue, 

• Tabular - as a collection of call parameters and corresponding accuracy. 

The obtained graphs and tables are shown in the Appendix in Figs. A1-A5. For each 

method and each required accuracy, there are shown: number N of grid points needed (upper 

sub-row) and the accuracy actually achieved (lower sub-row). 

The input data for all algorithms and for all test potentials were the same. The integration 

limits were properly chosen to eliminate errors (cf., Sec. 6.7). The testing process was 

automated. This way we obtained comprehensive results, which allow: 

1. Comparison of the accuracy and efficiency of the implemented algorithms for the basic 

classes of potentials, 

2. Selection of the most accurate, fastest and stable method and the optimal value of N for 

a given practical problem (by fitting it into one of the classes) and, therefore, shortening 

the time needed for its solution. 

7. EXAMPLES OF AMSSE PROGRAM USAGE 

The AMSSE program user is able to: 

• perform complete and accurate calculations for any single or multiple potential well, given 

by a formula or drawn with mouse, and to interpret experimental results or verify 

analytical solutions, 

• analyse an influence of potential profile on the energy spectrum and wave functions by 

immediate comparison of the results before and after the change, 

• perform series of calculations for a varying parameter in the formula describing potential 

energy, and to study its influence. 

Below we present three examples of results obtained with the AMSSE program. 
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7.1 . Quantum anharmonic oscillator 

The double potential well is described by the formula V(x) = ax4 - bx2 + cx. If c = 0, 

the potential is symmetric and the lowest eigenergies can be quasi-degenerated (their values 

can differ less than machine epsilon), cf., Fig. 16a. Increasing of c (what corresponds to non-

symmetric double well) leads to removal of the double quasi-degeneracy (Figs. 16b-d). 

Fig. 16. Graphs of the anharmonic oscillator potential with calculated eigenergies 

7. 2. Single and double finite rectangular quantum well 

With the AMSSE program, we have calculated eigenergies and eigenfunctions of charge 

carriers with effective-mass of 0.07me in the rectangular potential well 0.75 eV-deep and 

10 nm-wide (cf., Fig. 17a), and in the same well with a 2.5 nm-thick barrier in the middle (cf., 

Fig. 17b). Let us note, that in the double-well case the eigenstates appear in quasi-degene-

rated-pairs. 

Parameters used in the example correspond to GaAs/AlGaAs semiconductor heterostruc-

tures. 

Fig. 17. Single and double rectangular quantum well 
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7. 3. Band structure of one-dimensional solid 

We have calculated eigenvalues and eigenfunctions of electrons moving in a periodic 

potential given by 

V(x) = V0 · | sin ax | . 

The result are presented in Figs. 18 and 19. 

Fig. 18. Band structure and an example wave function in one-dimensional crystal 

Fig. 19. The electronic wave function in a perfect lattice (a) and in lattice with an impurity 

or point defect, which causes electron localization (b) 

8. MATRIX REPRESENTATION OF THE EFFECTIVE-MASS EQUATION 

Physical properties of low-dimensional semiconductor heterostructures (e. g., quantum 

wells and superlattices) are commonly interpreted theoretically within the effective-mass 

theory [11], In this context the main task is aimed towards an accurate solution of one-

dimensional effective-mass equation for envelope function 

(11) 

with the charge carrier mass m being a function of x coordinate (the OX axis is assumed 

parallel to the growth direction of the heterostructure). 

In order to discretize the above equation, we introduce the second grid of points, shifted 

by h/2 relative to the main grid: 



94 Numerical Matrix Method for Solving Stationary One-Dimensional Schrödinger Equation 

Eigenvectors of MT can be found with DWSZ method (9a-f). Some results of accuracy test 

for the discrete effective-mass equation applied to several semiconductor hetero-structures 

have been published [11]. A simple way of taking into account the conduction band non-

parabolicity effects is also presented there. 

9. FINAL CONCLUSIONS 

The AMSSE program we have created and described in this paper is an efficient numerical 

tool for solving stationary one-dimensional Schrodinger equation. Its efficiency and high ac-

curacy result from the use of algebraic matrix approach, which allows us to apply advanced 

algorithms worked out in numerical linear algebra. 

The main capabilities of the AMSSE program can be summarized as follows: 

1. It is a stable, fast and efficient computational platform for solving stationary one-

dimensional Schrodinger equation with arbitrary analytical or numerical potentials. 

2. It allows to calculate and to display in its graphical interface a large number of eigenvalues 

and eigenvectors at the same time. 

3. It has a lot of different efficient algorithms built-in, which allow us to compare results 

obtained with different methods. 

4. It allows the user to select the numerical algorithm most suitable for considered practical 

problem. It allows us also to choose an optimum number of grid points for the required 

accuracy. 

5. It can be applied for scientific purposes in the field of quantum mechanics and low-

dimensional physics. 

6. It fully uses capabilities and functions of Windows operating system, which makes it a 

user-friendly and comfortable tool. 

7. It is a valuable tool for physicists, chemists, engineers and nanotechnologists. 

In order to obtain the AMSSE program, please contact its authors. 

Applying three-point formula for the first derivative twice, we obtain for each x i 

Therefore, the effective-mass equation is reduced to an eigenproblem for a symmetic tri-

diagonal matrix This discrete 

form of (11) satisfies continuity conditions for the envelope function Ψ and (1/m)dΨ/dx in the 

limit of h 0 [11]. 
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Appendix - comprehensive test results 

For each method and for each required accuracy, number N of grid points needed (upper 

sub-row) and the accuracy actually achieved (lower sub-row) are shown. Detailed description 

can be found in Section 6. 

a c c u r a c y 

Fig. Al. Test results for the harmonic oscillator potential 
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Fig. A4. Test results for the Coulomb potential 
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Fig. A3. Test results for the Konwent potential 
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Fig. A4. Test results for the Coulomb potential (l = 0) 
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Fig. A5. Test results for the Coulomb potential (l = 2) 

99 



100 Numerical Matrix Method for Solving Stationary One-Dimensional Schrödinger Equation 

References 

[1] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics. Vol. Ill Quantum Mechanics, 4th 
ed,, Nauka, Moscow (1989) (in Russian). 

[2] E. Merzbacher, Quantum Mechanics, 3rd ed., John Wiley & Sons, N e w York (1998). 

[3] R. L. Liboff, Introductoiy Quantum Mechanics, 3rd ed., Addison-Wesley Longman, New York, 
(1998). 

[4] W. Greiner, Quantum Mechanics. An Introduction, 2nd corrected ed., Springer-Verlag, Berlin 
(1993). 

[5] S. Flügge, Practical Quantum Mechanics, Springer-Verlag, Berlin (1999). 
[6] R. Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum Press, N.Y. and London (1994). 
[7] F. Mandl, Quantum Mechanics, Wiley, Chichester (1992). 
[8] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading (1994). 
[9] F. Schwabl, Quantum Mechanics, 2nd revised ed., Springer-Verlag, Berlin (1995). 

[10] J. F. Van der Maelen Uria, S. Garcia-Granda, A. Menendez-Veläzquez, Am. J. Phys. 64, 327 
(1996). 

[11] W. Salejda, M. H. Tyc, J. Andrzejewski, M. Kubisa, J. Misiewicz, M. Just, K. Ryczko, Acta 
Phys. Pol., 95, 881 (1999). 

[12] J. Killingbeck, Microcomputer Algorithms, Hilger, Bristol, 1991; J. Killingbeck and G. Jolicard, 
Phys. Lett. A172, 313 (1993). 

[13] P. Harrison, Quantum Wells, Wires and Dots. Theoretical and Computational Physics, Wiley, 
Chichester, Ch. 2 and 3 (2000). 

[14] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes. Art of 
Scientific Computing. Cambridge University Press, Cambridge, Ch. 16 (1992). 

[15] R. Guardiola, J. Ros, J. Comput. Phys. 45, 374 (1982). 
[16] B. Lindberg, J. Chem. Phys. 88, 3805 (1988). 
[17] G. C. Groenenboom and H. M. Buck, J. Chem. Phys. 92, 4374 (1990). 
[18] Ch. 11 in [14], 
[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford 1965; see also 

Handbook for Automatic Computations, vol. 2, Linear Algebra, J. H. Wilkinson and C. Reinsch 
(Eds.), Springer-Verlag, Heidelberg (1971). 

[20] E. Anderson et al. LAPACK Users' Guide, 3rd ed., SIAM, Philadelphia (2000). 
[21] B. T. Smith et al, Matrix eigensystems routines — EISPACK guide, Lecture Notes in Computer 

Science, vol. 6, Berlin, Springer, Sec. Ed. (1976); B. W. Garbow, J. M. Boyle, J. J. Dongara, 
C. B. Moler, Matrix eigensystems routines - EISPACK guide extension, Lecture Notes in 
Computer Science, vol. 61, Berlin, Springer (1977). 

[22] C. F. Gerald, P. O. Wheatley, Applied Numerical Analysis, Addison-Wesley, Reading (1989). 
[23] M. Just, M. Sc. Thesis, Numerical Methods of Solving Schrödinger Equation. Program Pack-

age: MARKS, Report SPR-333/1998, Institute of Physics, Wroclaw University of Technology, 
Wroclaw 1998 (in Polish). 

[24] A. Baker and P. Graves-Morris, Padé Approxitnants. Encyclopaedia of Mathematics and its 
Applications, vol. 13 and 14, Addison-Wesley (1981). 

[25] P. Dean, Rev. Mod. Phys., 44, 127 (1972); see also W. Salejda, Int. J. Mod. Phys., B9, 1429 
(1995); B9, 1453 (1995); B9, 1475 (1995). 

[26] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia (1996). 
[27] K. S. Dy, S.Y. Wu, T. Spratlin, Phys. Rev. B20, 4237 (1979). 

[28] Z. Zheng, J. Phys. C: Cond. Matt., 19, L689 (1986). 
[29] H. Konwent, Phys. Lett. A118 , 467 (1986). 
[30] H. Konwent, Acta Phys. Pol. A71, 637 (1987). 
[31] H. Konwent, Phys. Stat. Sol. B138, K7 (1986). 
[32] H. Konwent, P. Machnikowski, P. Magnuszewski, A. Radosz, J. Phys. A: Math.Gen.. A31, 7541 

(1998). 




