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A b s t r a c t : The paper presents the algorithm and subroutine G R G E N for generation of connected closed 
linear graphs utilized in perturbation expansions. Starting with polygons and subsequently choosing pairs 
of not directly connected vertices in already generated graphs, the algorithm consequently projects one 
vertex onto the other one in the pair, generating only topologically different graphs. This algorithm is 
independent of the choice of a specif ic model and lattice geometry. The procedure is written in the 
FORTRAN 77 language, and is available at the Poznań Supercomputing and Networking Center on the SGI 
Power Challenge XL supercomputer. 

1. INTRODUCTION 

Perturbation expansions are widely used in physics and astronomy. For physical phenomena 
in which interactions between degrees of freedom of the system completely change the character 
of the solution, it is necessary to derive substantial numbers of terms for such expansions. Clas-
sification of the contributions of higher order terms naturally leads to a description in terms of 
linear graphs1 (for the review see [1]), in which bonds correspond to interactions. In this work 
only linear graphs are considered. 

One of such phenomena of basic importance is spontaneous magnetization, in modelling of 
which an important role play the lattice-spin systems. The perturbation expansions have attracted 
particular attention in statistical mechanics, and especially the low- and high-temperature expan-
sions (L&HTE) have led to important progress in the theory of phase transitions and critical 
behaviour of these systems. Investigation of complex models of this phenomenon is usually car-
ried out by computer simulation methods of the Monte Carlo type, whose results should be confir-
med with the aid of another complementary method. The methods complementary to the Monte 
Carlo type ones are L&HTE (see e. g. [2] and the papers cited therein). 

Application of L&HTE requires the use of all topologically different graphs of i-th order2, for 

1 A linear graph is a collection of k points (called vertices) with i bonds between certain pairs of vertices 
and one pair of vertices is connected by one bond 

2 The i-th order graph is the one containing i bonds 

i n, where n denotes the maximum order of expansion after which the series is truncated. Only 

the closed graphs bring non-zero contribution to the partition function of the lattice-spin systems, 
and then to the magnetization and to other thermodynamic functions (see e. g. [3]). In addition 
it is enough to generate only the connected graphs because the non-connected ones are com-
binations of the former. 
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In L&HTE graphs are "dressed", i. e. a specific spin-spin interaction together with a coupling 
constant is assigned to every bond in the graph, which is connected with the choice of the specific 
model. We will illustrate this "dressing" taking a simple Ising model as an example in which 
short-range interactions appear only between the nearest neighboring spin variables s, where 

3 Projection of one vertex onto another one physically denotes their overlap 

s = ±1. Every interaction contributes to the partition function with the factor of the product 

which appears under the sum over all spin configurations (K is the coupling constant). Since 
= cosh A( 1 ± tanh A), thus = cosh A (1 + si sj tanh K). In "dressing" a graph 

we assign the factor sisj tanh K to the bond connecting the i-th and j-th vertices (for details see 
[1, 3]). In the Ising model every bond is characterised by the same constant tanh K, because there 
appears only one kind of spin variables and one kind of interactions. But this problem is much 
more complex in a more complex model as e. g. Ashkin-Teller model. 

After this stage of calculations, certain connected graphs are rejected, particularly in more 
complicated models. Therefore only after the graphs have been "dressed", all non-connected 
graphs can be constructed as combinations of connected graphs of lower orders whose sum is the 
order of the complex graph. 

This paper describes the generation of closed connected linear graphs. It is worth noting that 
the algorithm proposed here is independent of the choice of the model and the lattice geometry, 
thus the results are of general character. 

2. THE ALGORITHM OF CALCULATIONS 

We propose here the algorithm GRGEN, which generates all closed connected linear graphs 
and n denotes the maximum order of graphs generated. We perform the 

generation of graphs starting from polygons which are the simplest graphs and simultaneously 
they are the starting-point for further calculations. Next graphs are obtained by choosing in the 
starting graph of all possible pairs of not directly connected vertices and next by consequent 
projections of the vertex3 of a higher number (which disappears) onto the other one in the chosen 
pairs. 

An important matter is the way of labelling of graphs. We assign the label to each graph in 
such a way so that to generate only topologically different graphs. Two graphs which can be put 
into 1 to 1 correspondence, so that the vertices and bonds correspond, are isomorphic and should 
get the same label. For the graph composed of k vertices we form the (k x k)-dimensional matrix 
M of connections of vertices in a given graph: when i-th and j-th vertices are directly connected 
by the bond then the element Mij= Mji = 1 and 0 otherwise, whereas the diagonal elements are 
zero. The label of the graph is the vector composed of the overdiagonal elements of matrix M read 
over by rows starting from the left to right and from the top to bottom, but we number vertices 
in such a way that this vector forms the number of the maximum possible value. This is the 
unique way of labelling the graphs as a result of which all isomorphic graphs get the same label 

[4]. 

n, of i-th order, where i 
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The label of every graph obtained as a result of projection of vertices onto themselves is added 

at the end of the set of generated graphs provided it has not been generated earlier. The algorithm 

finishes calculations when all graphs from the set have undergone the projection procedure and 

from the last one no new graph arose. 

It is worth noting that such labelling of graphs allows one to restore the matrix M of 

connections of a graph. Moreover, the labels allows a distinction of all topologically different 

graphs and they contain the full information about the graphs which they label. 

3. DESCRIPTION OF THE GRGEN PROCEDURE 

The GRGEN procedure generates closed connected linear graphs suitable for the 

L&HTE-like expansions. 

The basic problem which arises at generation of graphs over 11-th order is a great amount of 

operational memory which is occupied by labels of generated graphs. That is why the subroutine 

GRGEN is written in the language FORTRAN 77, which allows the use of variables of 

non-standard length of 1 byte. 

The call of the procedure: 

CALL GRGEN (N, NINIT, FILEOUT, NGR, IERR) 

The input parameters: 

N - an INTEGER type variable which determines the maximum order of generated graphs. 

NINIT - an INTEGER type variable which determines the maximum order of initial polygons, 

The output parameters: 

NGR - a vector declared as INTEGER NGR (30) where NGR(I) contains number of generated 

graphs of I- th order for I= 1,2,..., N. 

IERR - an INTEGER type variable whose value: 

0 indicates the successful ran of the procedure GRGEN, 

on the basis of which graphs are generated, NINIT N + 2 is required. The higher N the higher 

NINIT relative to N. For the sake of illustration, Table I shows the changes in the maximum 

order of completed graphs Ncompl depending on a preselected value of NINIT. Taking N of above 

12, it should be checked that an increase in NINIT by 1 does not imply an increase in the number 

of graphs generated NGR (I), I = 1,2,..., N. 

FILEOUT - a CHARACTER* 12 type variable which contains a file name where to write the 

labels of the generated graphs. The graphs are ordered by their orders from 3 up to N. 

Table I. Maximum order of completed graphs Nc o m p l in terms of the values 

of the parameter NINIT 

1 indicates a data error: NINIT > 30 or NINIT N + 1, 

2 indicates not sufficient memory to store graphs, i. e. N is too large. 
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In the implementation on SGI Power Challenge XL Supercomputer the accessible memory 
can host labels of all graphs up to NINIT =17. For NINIT >17, after the projection procedure 
the algorithm removes from the memory all graphs of the order i > N. Since these graphs freq-
uently appear once again the calculations, the time of the procedure completion is additionally 
prolonged. 
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