
COMPUTATIONAL METHODS IN SCIENCE A N D TECHNOLOGY 3, 3 9 - 5 4 ( 1 9 9 7 ) 

S I M U L A T I O N S OF C R I T I C A L P R O P E R T I E S OF 
C L A S S I C A L SPIN M O D E L S 

Computational Physics Division Institute of Physics, A. Mickiewicz University, 
ul. Umultowska 85, PL 61-624 Poznań, Poland 

e-mail: g j k @ p e a r l . a m u . e d u . p l 

Abstract 

Two methods of simulations are described: an exact one - transfer ma-
trix technique and a statistical one - Monte Carlo method. Both of them are 
applied to investigate critical properties of classical spin models. To do this 
we also exploit finite size scaling and the critical point ratio of the square 
of the second moment of the order parameter to its fourth moment. Gen-
eral definition of a classical spin model as well as particular definitions of 
models are presented. Results of both methods are in good agreement and, 
moreover, they are consistent with numerical results provided by literature. 

1 Classical spin models 

A spin is a quantity hard to understand on the grounds of classical physics. A 
notion of a spin comes from experimental results and as a physical quantity it 
is described by a spin operator in the formalism of quantum mechanics. As yet 
only in this formalism a definition of a spin is reasonable. 

Thus, when we talk about spin in the context of classical models we do not 
mean a quantum spin operator. A name "spin" is used to call a set of numbers 
labeling states of an atom or a molecule, or in general, a site of a lattice. The 
name comes from the fact that these numbers are eigenvalues of the z component 
of a real quantum spin operator. So, defining a quantum model (e.g. of a solid 

located at each site i of a lattice, but when we define 
a classical spin model we use variables Si located at each site i of a lattice, where 

Si is an eigenvalue of a z component of an operator 
Classical spin models may be sometimes regarded as approximation of quan-

tum spin models, but not always. Sometimes a spin variable is used to write 
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state) we use operators 
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down a Hamiltonian of a model only because of mathematical convenience. In 
general there are two reasons for which classical spin models are interesting: 

• They are usually easier to treat than quantum models and may be used as 
approximations of the latter, (e.g. Ising model) 

• There is a broad spectrum of problems where classical formalism (i.e. clas-
sical models) works very well and where quantum models do not introduce 
any qualitative changes to physics of the problem. 

We focused our investigations on the following classical models defined for 
the nearest neighbours interaction case: 

the Ising model - the simplest and the best known one, but still not exactly 
solved in three dimensions 

(3) 
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(1) 

Si is called the Ising variable 

the Ashkin-Teller (AT) model - one of the generalisations of the Ising model 
originally defined as a model of a four component alloy [1], The Hamil-
tonian of this model may be written using two Ising variables (S and 
located at each site of a lattice [2]: 

) 

(2) 

the Extended Ashkin-Teller (EAT) model - an extended version of the AT 
model proposed by Pawlicki [3] 



t h e B l u m e - C a p e l ( B C ) m o d e l - proposed independently by Blume [4] and 

Capel [5]. 
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(4) 

(5) 

Everywhere in the Hamiltonians given above stands for inverse temperature 

(where kB is Boltzman constant), h stands for reduced magnetic field and 

solids. 

All these models are especially interesting as models of phase transitions in 

the parameters K, K1, K2 and Δ stand for various coupling constants. 

t h e q = 3 P o t t s m o d e l - One of q-state Potts models. It may be also defined 

by puting = ±1,0. The model defined in such a way will fit to our 
definition of a classical spin model. 

= 0 , 1 , 2 - Kronecker delta 

2 T h e critical point and scaling relat ions 

Two sorts of phase transitions are generally distinguished: 

first o r d e r p h a s e t r a n s i t i o n s - the name comes from the fact that at least 

one of the derivatives of free energy is discontinous at the phase border 

c o n t i n u o u s p h a s e t r a n s i t i o n s - First order derivatives of free energy are con-

tinuous. Usually the second or higher order derivatives of free energy are 

discontinuous at the phase border. 

A critical point is a point in a phase diagram at which a continuous phase 

transition takes place. A critical line is a line consisting of critical points. A 

typical phase diagram of a pure substance is presented in Fig. 1. 

A second order phase transition is usually a transition between the ordered 

and disordered phases. For description of such a transition the so called order pa-

rameter is used. This is a quantity which is equal to zero in disordered phase and 

is different from zero in ordered phase. In magnetic systems, for instance, where 



Figure 1: A schematic phase diagram of pure substance. Solid lines are lines of 
first order phase transition. Point C is the critical point. 

transition between para- and ferromagnetic phases is continuous, magnetization 
of a lettice is a good order parameter. 

In the very close vicinity of the critical point many physical quanities may be 

where (i = 1, ...,n) are scaling fields, yi (i = 1, ...,n) are the so called critical 
exponents, d is a dimension of a system, l - rescaling parameter and fs is a 
singular part of free energy density f defined as follows: 

(6) 

(7) 
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and Tc is temperature at the critical point (critical temperature)), and other 
scaling fields i.e. quantities defined in such a way that at the critical point all 
of them are equal to zero. Thus a magnitude of scaling fields is a measure of a 
distance in the parameter space from the critical point. 

It is sufficient to find scaling relations only for free energy since other ther-
modynamical potentials can be easily calculated therefrom. From experimental 
results and renormalisation group arguments the following scaling formula [6] for 
free energy may be written: 

(where T is temperature scaled with respect to reduced temperature 



Experimental results and some theoretical assumptions [6] allow us to define also 
other critical exponents: 

tions of the finite-size results to thermodynamical limit. 
Scaling relations are usualy exploited to find critical points or critical ex-

ponents of a model. In practice, however, not free energy, but other, more 
convenient quantities are scaled. One of them ( which we usually apply) is an 
inverse of the Binder cumulant: 

For the Ising universality class [8]: 

(15) 
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where M is an order parameter, < ... > stands for thermal average and the 
index L indicates a linear size of a system. At the critical point the quantity 

(13) 

(12) 

(14) 

is universal. Exploiting the relations: 

and the scaling the formula (12) we can derive [7] a scaling relation for QL with 
respect to the scaling field and expand it with respect to t: 

where Ch - specific heat, M - magnetization, - magnetic susceptibility, 
correlation length. Exponents are called critical point exponents and 
are universal, i.e. the same for a given class of models. They are also related to 
exponents yi from Eq. 6. Because phase transitions take place only in infinite 
systems we may introduce another scaling field where L is a linear size of a 
system. Taking l = L we may scale free energy with respect to the linear size of 
a system: 

This relation is very useful because for = 0 (i = 1, ...,n) it enables extrapola-

(8) 

(9) 

(10) 

(11) 



(16) 

depends on many terms proportional to L in powers larger than those in the 
formula (16) for QL(0). 

Figure 2: Cumulant ratio QL for EAT model measured for K4 = 0.36, K = 0.03 
along the K2 axis. Critical value of the parameter K2 is 0.158 and the system 
sizes are defined by the labels. 

Now we will focus on the method of finding the exact position of the critical 
point. We take all the scaling fields except t and L-1 equal to zero. Then we 
compute QL(t) (using transfer matrix (TM) or Monte Carlo (MC) method) for 
various L at a starting point. It is the point on the phase diagram which lies 
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where yh is a magnetic exponent and (i = 1,...) are amplitudes independent 
of t and L. The corresponding formula for is more complicated [7] and 



close to the supposed position of the critical line. Then putting values of 

measured for different values of linear size L, assuming the values of the Ising 
critical exponents. The parameters are: 

and the more accurate our results are. Amplitudes can be calculated for a 
known t at one point and can be used for finding other points because they are 
quite stable within one model (however, they are not universal). It is possible 
for models where at least one critical point is known exactly (e.g. the Ising point 
in the AT model). 

Figure 3: Size-scaled values of the order parameter (for the EAT model) 

a) 

b) 

Solving the above mentioned set of equations we obtain a value of the scaling 
field t. Since t is a measure of a distance from the critical point, knowing the 
coordinates of the starting point we calculate coordinates (in the parameter 
space) of the critical point. This method is very accurate and works even for 

into formula (15) we obtain a set of equations for amplitudes and for t. The 
larger the L is the more terms in expansion (16) for QL(t) can be considered, 
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very small systems [7, 8, 9, 10], provided that the accurate finite-size estimates 
are found. 

Because QL at the critical point very quickly tends towards the universal 
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value Q with increasing L, having results for large L we can assume that at 
the critical point QL = Q . This is of course an approximation which becomes 
exact as L tends to infinity. Thus, if we compute numericaly QL for large L 
(using MC method) for various values of parameters we may present them as 
curves plotted against certain parameters (e.g. temperature t). For another L 
we have another curve and so on. Since Q does not depend on L, the curves 
should intersect for the critical values of the parameters (Fig. 2). In fact, for 
small L, there is not one point of intersection but a series of points, which go 
to one limiting point as L tends to infinity. This limiting point is the critical 
point we are looking for. The method based on the Binder cumulant has been 
succesfuly applied to a variety of models [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. 

If we consider large systems we can neglect all terms in the scaling formula 
except one. Then the scaling relation at the critical point for the order parameter 
M may be written in the form: 

(17) 

This relation suggests that should be a straight line independent of 
L, if we have choosen the proper values for Tc and the critical exponents. Ex-
amples of such analyses are shown in Fig. 3 where we plotted the L-dependence 
of for the EAT model for several values of K2 in the ferro and antiferro-
magnetic (K 4 < 0) regions. This method enables a determination of the critical 
value of a parameter K2 with an accuracy of 0.001 [21]. 

3 The t ransfer mat r ix method 

The TM method is an exact method exploited by us to compute the ratio QL. 
It can be applied to a broad class of models written in the form: 

(18) 

(19) 

Vectors (i = 1,..., L) stand for spin variables from the i-th block of the lattice. 
In two dimensions and for nearest neighbour interactions, a block is equivalent 
to a column (Fig. 4). 

Then we can express a partition function as follows: 



Figure 4: Blocks of Ising variables for the AT model (for nn interactions) on 
square lattice. One column is equivalent to one block. 

(21) 
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where is called a transfer matrix. This can be split into 
the product of a diagonal matrix and a non-diagonal matrix 
containing the intra- and the inter-column interactions, respectively. For the 
isotropic AT model (K1 = K2) they are defined as follows: 

(20) 

The symbols in eqs (20) and (21) are the same as in eq. (2). The matrix 
can be expressed as a product of sparse matrices what facilitates the numerical 
calculations. 

The averages in Eq. (13) can be expressed in terms of the corresponding 
coefficients Zk [8] in the expansion of the field dependent partition function 



(22) 

Only the matrix Tv depends on h and it can be expanded as follows: 

(23) 

where M is a diagonal matrix representing the order parameter; for the AT 
model it may have the form: 

by multiplying the base vectors by matrices Tv and Th in such a manner that 
the terms in the same power of h are kept separately [8]. Additionaly we exploit 
the symmetry of the model, i.e. we consider only non-equivalent states of the 
block. Such a method facilitates numerical calculations and enables, e.g. in case 
of the Ising model, exact calculation of QL ratio for two dimensional systems up 
to size 20 x 20 in a reasonable time. For more complicated models the maximum 
size of the system for which calculations can be performed is somewhat smaller. 

4 The Monte Carlo method 

The second computational method used by us is the MC method. It enables con-
sideration of bigger systems, but with lower accuracy due to the statistical nature 
of the method. In our investigation we generate numerically two-dimensional 
finite size samples of spins for fixed values of the model parameters. Periodic 
boundary conditions are imposed and thermalization of the initial configurations 
(relaxation of the system towards thermal equilibrium) is applied. For such a 
sample all equilibrium physical quantities as well as their statistical errors may 
be obtained by a direct calculation. 

One possible strategy for sampling the configurations of a system is to choose 
states completely at random. However, there is a serious problem with this 
approach. If the states which make negligible contributions to such quantities as 
partition function are taken with the same weight, they give a great unphysical 
contribution to the variance of the internal energy which leads to serious errors 
at low temperatures. We can alleviate this problem by the so called importance 
sampling which consists in arranging the way of sampling so that we spend 

(24) 
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The coefficients Zk can then be calculated from Eq. (19) (which may have 
the form of a sum over all base vectors of one block: 



the system is generated from a by some method. For example, one might try 
reversing the direction of a single spin. This spin may be selected at random, 
or each of the spins in the sample may be reversed in turn (which is the case 
here). We reverse the spin or do not do it according to some initially chosen 
transition probability and when each spin of the sample has been visited once 
(on the average or consecutively) we carried out one Monte Carlo step (MCS) 
per spin. Either of these procedures ensures that the accessibility criterion is 
satisfied, which states that it must be possible to evolve the system from a given 
starting point to any of its other configurations by applying the evolution rule a 
sufficiently large number of times. 

In order to decide whether to accept a single spin-flip or not, we compare 
energies of the new and old configurations. If the energy change is negative, then 
the new configuration is automatically accepted; if, however, it is positive, the 

as much time as possible looking at those configurations which make a large 
contribution to the quantities we are trying to calculate. 

We sample the Gibbs distribution using the Metropolis algorithm [22]. We 
start with some initial configuration of spins and a new configuration of 

new configuration is accepted with a probability . For the Metropolis 
algorithm the microreversibility assumption is satisfied which means that we 
have: 

(25) 

where denotes a probability of the configuration , while stands 
for a probability of the transition from to configuration. Physically it 
means that both configurations are in equilibrium and none of them arises at 
the expense of the other. In such a way we generate a Markov process which gives 
us an insight into a dynamical evolution of the initial configuration towards an 
equilibrium. Using this method, we generate samples which allow us to calculate 
physical quantities in a direct way [21]. 

5 Resul ts 

In this section we present the results and compare them with those available 
in literature. For the isotropic AT model on a square lattice we calculated the 
position of the Ising like critical lines exploiting TM technique (Fig. 5). 

In the phase diagram we can distinguish the four phases: 

B - Baxter phase 

P - paramagnetic phase 

F - ferromagnetic phase 

49 



Figure 5: The phase diagram of the AT model in two dimensions. The solid 
bold line represents the exactly known critical line, which terminates at the 4-
state Potts point. Empty circles with continuous lines describe our results. The 
solid circles display MCRG results, the dotted line is drawn after Baxter and 
diamonds are the transfer matrix results combined with conformal invariance. 
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AF - antiferromagnetic phase (< S >= 0, < 0 on sublattice i.e. 
ordered in an antiferromagnetic way), 

The first two order parameters < S > and < 

> 

> are different. The third order 
parameter < > is always equal to < S > because we consider the isotropic 
(K1 = K2) version of the model. 

The curve plotted by the bold line represents the part of the phase diagram 
found exactly by Baxter [23]. It separates the Baxter phase B from the param-
agnetic phase P. 

In the ferromagnetic region K4 > 0 we have only calculated the curve joining 
the 4-state Potts point to the pure Ising point Kc at K2 = 0. The second branch 
follows from the corresponding duality relation [24, 23]. The boundary between 
AF and P phases is plotted in Fig. 5 by the dotted line given approximately by 
Baxter [23] and in the ferromagnetic region we also include the MCRG results 
[25] marked by filled circles. 



Figure 6: The phase diagram of the Blume-Capel model (D = Δ / K ) . Our results 

are drawn with stars connected by lines. RG1 and RG2 are lines of continuous 

transition predicted by two different RG approaches. Earlier results obtained in 

PM scheme are drawn with squares and a long dashed line connects points which 

belong to the first order transiton line. 

As can be seen (Fig. 5), our results are in good agreement with the MCRG 

[25] approach, but they are quite different from the Baxter's predictions [23] 

in the antiferromagnetic region. For the boundary between AF and P phases, 

our results coincide with those obtained by Mazzeo et al. [26]. These authors 

actually investigated the six vertex model with the transfer matrix technique in 

combination with conformal invariance arguments; their results can be mapped 

onto the results for the P-phase boundaries and they are shown in Fig. 5. The 

numerical uncertainties do not exceed the size of the symbol. 

In Fig. 6 the results obtained for the BC model are presented. As in the 

case of the AT model we calculated with high accuracy the position of the Ising 

like critical line by recourse of the Q-ratio technique. This line ends at the 

tricritical point (TCP) which is located using the phenomenological renormal-

ization scheme (PR) [27] and is denoted in Fig. 6 by TMTCP) and two differ-

ent real-space renormalisation group approaches [28] (denoted as RG1TCP and 

RG2TCP). At the TCP the critical line meets the first order transition line (long 
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dashed line). We did not calculate the TCP because its position is known with 
quite a high accuracy from PR [27] (1 / K t = 0.610(5), Dt = 1.965(5)) and MC 
results obtained by Wilding at al [29] (1 /Kt = 0.608(1), Dt = 1.9665(3)) - not 
shown in Fig. 6. These results coincide within the error bars and we did not see 
a need to estimate them once again, especially, because this point belongs to a 
different universality class. Determination of its positions requires more effort 
than in case of an Ising like transition. Our results (stars connected by solid 
line in Fig. 6) are in good agreement with PR results (squares in Fig. 6) and 
demonstrate the systematic deviations of those obtained in the framework of RG 
approaches [28]. 

Figure 7: The size dependence of the QL ratio at the critical point of the q = 3 
Potts model. The stars denote QL and the filled diamond shows an extrapolated 
value. 

Fig. 7 presents the QL ratio plotted against L-0.8 at the critical point of 
the q = 3 Potts model on a square lattice L x L. The linear character of this 
dependence confirms the theoretical scaling predictions [30]. Results from Fig. 7 
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which has not been known so far. 
The phase diagram of the EAT model obtained by MC method is presented 

in Fig. 8. Open circles and stars stand for our MC and TM results, respectively. 
Error bars do not exceed the size of the symbols. The plane K = 0 in Fig. 8 
is the phase diagram of the isotropic AT model. It is easy to perceive that the 
MC and TM results coincide within the error bars. In the framework of MC 

enable an estimation of the universal critical point ratio at Q = 0.5701±0.0001, 



simulations (Fig. 8) two surfaces of Ising like transitions have been calculated 
and the existence of the tricritical points has been ruled out. 

Figure 8: The critical surfaces in the space of parameters. Circles denote the 
results obtained by MC method, stars denote the values from the transfer matrix 
technique. The line without any symbol represents the exact Baxter curve. Other 
lines are drawn to guide eyes. 
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