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Abstract: Symbolic sequence decomposition into a set of consecutive, distinct subsequences (mers) is presented. 
Several statistical distributions of nucleotide subsequences are defined and analysed. Sequence entropy and similarity 
between sequences in terms of mer lengths distribution are defined. An alignment-free method of phylogenetic tree 
construction is proposed. 
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I.  INTRODUCTION 

 
A DNA sequence is a string consisting of four types of 

bases. It is an example of a symbolic sequence over the 
four letters alphabet. The length of DNA strings creates an 
urgent need for efficient methods of statistical analysis of 
long symbolic sequences. The approaches known so far 
have not been robust enough. Among them there is the 
distribution of the frequency of occurrence of subsequences 
of consecutive symbols, called oligonucleotides or k-mers. 
For example, the distribution of k-mers lengths is believed 
to be related to the complexity of a symbolic sequence. 
However, the question arises which k-mer selection and 
sizes have to be considered. The aim of the present paper is 
twofold: to develop the method of sequence decomposition 
into a set of distinct, non-overlapping k-mers (hereinafter 
called mers) of size greater than 2, and to give some 
examples of how useful that set can be. The paper is 
organized as follows: in the first section, entropy, similarity 
and examples of statistical measures of symbolic sequences 
are defined and shortly discussed. As an illustration, the 
mer spectra of two short sequences of nucleotides are 
obtained and their entropy and similarity are calculated. In 
the second section, the Saccharomyces cerevisiae chromo-
some M is analysed. Distribution of selected sequences of 
nucleotides between mers of all lengths is calculated. The 
long-distance statistical correlation between bases loci is 

shown. In the third section, mer spectra of complete mito-
chondrial DNA sequences of 13 human closest relatives are 
found and their similarity matrix which has been used in 
the following for construction of evolutionary tree for that 
set of species is calculated. 

 
 

II.  DECOMPOSITION  OF  SYMBOLIC  
SEQUENCE 

 
Characterization of symbolic sequences by an ordered 

set of subsequences has numerous advantages. However, 
the question arises how to perform sequence decomposition 
to obtain suitable subsequences. The first parsing algorithm 
was developed by Lempel and Ziv [1], in order to define 
quantitative measure of symbolic sequence complexity. 
However, the Lempel-Ziv algorithm has at least one defect, 
their complexity measures randomness mainly. There was 
an attempt [2] to exploit the parsing algorithm by Lempel 
and Ziv to sequences comparison, but they used too 
intricate and not unique distance measure. Ke and Tong [3] 
proposed some substantial modification of the Lempel-Ziv 
algorithm by adding replication operation. Recently, Kása 
[4] has considered similar decomposition of the symbolic 
sequences into a set of substrings called d-substrings. 
However, Kása was interested in some special sequences 
and did not provide a general decomposition algorithm. 
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Both mentioned approaches claim that the total number 
(different in the two cases) of substrings is supposed to be 
a measure of sequence complexity. The relation between 
symbolic sequence entropy and complexity is discussed in 
[5]. On the other hand, a distance measure between 
symbolic sequences based on the Lempel-Ziv complexity is 
presented in [6]. In all papers quoted above only the 
number of subsequences was considered as important. The 
most interesting result of the present paper is the statement 
that the whole set of mers (not only their number) is a very 
rich resource of information on a symbolic sequence. 

Sequence decomposition leading to characterizations of 
numeric sequences by utilizing the subsequence represen-
tation has been introduced in [7]. Subsequences (mers) 
arise as a result of a specific parsing algorithm applied to 
the sequence of interest. There the Ke and Tong de-
composition algorithm was used after some modifications. 
Subsequence s arises as a result of appending some symbol 
c1 from the primary (the sequence of nucleotides) sequence 
by the following symbols. After each step subsequence s is 
checked. In the beginning, whether it is chaotic, if it is not 
then s is checked whether it is periodic. If it is not periodic, 
the whole set of the subsequences obtained so far (the set 
of all s's) is searched for the presence of subsequence s. If 
subsequence s has been found, it is appended by the 
following symbol c2 and so on. Appending stops when s 
has not been found, and it becomes a new distinct sub-
sequence (mer). The code of the presently applied parsing 
algorithm is available on request. 

After the parsing procedure is completed we are in 
possession of a set of distinct mers representing the pri-
mary sequence, and the mers can be consecutively enume-
rated. The enumerated set of mers is called mer spectrum S 
of the primary symbolic sequence. Once the mer spectrum 
is found the nonparametric measure of several interesting 
quantities can be defined. In the present paper the mer 
spectrum is considered as an ensemble of strings. The 
ensemble can be used to find the probability distribution of 
various quantities. An example is mer lengths distribution 
which is used in the following to define Shannon entropy 
of the primary sequence. A common set of mer spectra of 
two sequences (their intersection) is proposed as a measure 
of similarity between the sequences. Then the alignment-
free method of sequence comparison is possible as well. 
 
 

III.  MER  SPECTRUM 
 

The mer spectrum can be used to identify several pro-
perties of a symbolic sequence. The large group of pro-
perties includes statistical distributions of any set of 

symbols present in mers. Another one is the entropy of 
sequence and the similarity measure between two se-
quences. When the mer spectrum is considered as an 
ensemble of strings it is straightforward to calculate the 
string lengths distribution. Let p(l) be the probability to 
find string of length l in the mer spectrum, then  

( )2( ) log ( )
l

H p l p l= −∑  

can be considered as Shannon entropy of a symbolic se-
quence. In the present context H is the configuration entropy. 
Unfortunately entropy (including Shannon entropy) has 
various interpretations. Brissaud [8] suggests that entropy 
measures freedom of the system. However, it is not clear 
what exactly the freedom of a nucleotide sequence means. 

Estimating the degree of similarity between a set of 
sequences is an important problem in molecular sequence 
analysis. The similarity helps to discover relationships 
within a set of sequences which is a prerequisite to com-
parative genomic analyses. For example, similarity matrix 
of β-globin sequences approximately 100 bases long is 
(among others) used to construct a species phylogenetic 
tree. The similarity measure is dual to the often used 
distance between sequences. There are numerous measures 
of distance between symbolic sequences in use. For 
example, the distance between two sequences is related to 
the minimum number of events required to convert one 
sequence (or its segments) into another. For comparison of 
very long sequences, e.g. whole genomes, an approach 
based on the frequency of k-mers that appear in a set of 
sequences is used [9]. The approach consists in counting 
occurrences of k-mers in a sequence, for k typically ranging 
from 2 to 8 and applying different statistical methods to 
k-mer distribution.  

The similarity measure proposed in the present paper 
has the following advantages: it works well for pairs of 
sequences of different and arbitrary length, and it does not 
depend on any distance measure. With the use of spectrum, 
the similarity between nucleotide sequences C1 and C2 can 
be defined simply as  

1 2
1 2

1 2

(int( , ))
sim( , )

( ) ( )
d S S

C C
d S d S

=  

where 1 2int( , )S S  is a one-column vector of mers common 
for the two spectra (intersection of S1 and S2), and d(S) 
means dimension (length) of spectrum S. Similarity measu-
res is normalized to fall into the range between null and 
one. Similarity is a symmetric function of its arguments, so 
for the set of sequences, the similarity matrix is sym-
metrical sim( , ) sim( , ).j i i jC C C C= . It can also be useful to 
know which regions of the two sequences are similar, and 
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which are different. As a measure which shows a similar 
region (common mer numbers) between two sequences the 
vector 1 2int( , )S S  of 1 2(int( , ))d S S  rows can be appended 
by two columns. As a result, we get a three-column matrix. 
The first element of each row shows a mer common for the 
two sequences, the second one is the index of the mer in S1 
spectrum, and the last one shows the index of the same mer 
in S2 spectrum.  

To demonstrate how the introduced measures work, two 
short sequences piRNAof H. sapiens are considered. They 
were downloaded from GenBank, http://www.ncbi.nih. 
gov/. The accession number of the first one is DQ601956.1, 
and of the second one – DQ601954.1, they are 29 and 26 
bases long, respectively. Partition algorithm yields the 
following mer spectrum for the first sequence S1 = 
(TAGTG, ATGCTTC, ATGGA, CAAG, GCTTG, GCA), 
it is 1( ) 6d S =  mers long. Probability  p(n) to find n 'A' 
symbols in any mer is p(0) = 1/6, p(1) = 3/6, p(2) =2/6. 
Probability p( l) to find 'GC' sequence among mers of 
length l is p(2) = p(4) = 0, p(3) = p(5) =1/4, p(7) = 1/4, p(2) 
=2/4. Mer length probabilities are p(3) = p(4) = p(7) = 1/6, 
p(5) = 3/6, p(6) = 0. Therefore, sequence entropy is given 
by  

2 2
1

3log (1/ 6) 3log (3/ 6)
( ) 1.79.

6
H s

+
= − =  

The mer spectrum of the second sequence S2 = (TAGTG, 
ATGAC, ATTG, TGGA, CAAG, CTGC) is also 6 mers 
long and the corresponding entropy is 0.92. The intersec-
tion of the two spectra consists of 2 mers int(S1, S2) = 
(TAGTG, CAAG), so similarity between the two se-
quences is  

1 2
2 1sim( , ) .

6 6 3*
s s = =  

Besides, common mer pairs are 1 2( (1), (1))S S  and 1( ) (4),S  
2 (5)).S  

 
IV.  ANALYSIS  OF  SACCHAROMYCES  

CEREVISIAE  CHROMOSOME  M 
 

The increasing amount of DNA data resulted in many 
new problems of statistical nature. Mer spectra can help to 
cope with large data sets. To provide closer demonstration 
of mer spectrum ability a relatively long sequence of 
nucleotides is considered. S. cerevisiae chromosome M 
was downloaded from GenBank, and the accession number 
of the sequence is NC_001224.1. The sequence is 85 779 
bases long, its 'A', 'C', 'G' and 'T' symbols content is 36 169, 
6863, 7813 and 34 934, respectively. Sequence decomposi-

tion results in the mer spectrum consisting of 10 312 mers 
of length from 3 to 19 bases. Once the spectrum is known 
the entropy and many statistical characteristics can be ob-
tained. The simplest are three probabilities. The first of them 
answers the question about probability p(l) that a mer picked 
up randomly is l bases long. Another two give probability 
pA/T(l) (or pC/G(l)) that in a randomly selected mer of length l 
at least one A or T (C or G) base can be found.  

 
 

 
Fig. 1. Probability distributions of ‘A’+’T’ and ‘C’+’G’ content 
found in the mer spectrum of the sequence NC_001224 (GenBank) 
                                                

 
    Figure 1 shows p( l) and weighted probabilities cA|T pA|T ( l) 
and (1 ! cA|T)pC|G( l), where cA|T = 0 . 8 3  is ratio of C + T 
bases. The p( l) probability is the sum of the other two p(l) 
= cA|T pA|T ( l) + (1 ! cA|T)pC|G ( l). From Fig. 1 it follows that 
distributions of A and T bases (which are very similar) are 
qualitatively different from that of C and G bases. It is 
worth noting that the shape of base distribution like that of 
pA/T( l) has not been observed elsewhere so far. When the 
primary sequence is thoroughly shuffled to remove any 
correlation between bases loci both distribution functions 
become quite similar, as it follows from Fig. 2.  

 

 
Fig. 2. Probability distributions the same as in Fig. 2 but for 
                                     a shuffled sequence 
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One may ask whether the above probabilities can be fit to 
any known partial distribution function. The relatively good 
fit to weighted sum of two Weibull [10] distribution func-
tions was found. The Weibull partial distribution function  

01
0( )

bx xb
ax xbp x e

a a

−⎛ ⎞−
⎜ ⎟
⎝ ⎠−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

is defined for x $ x0, the scale !a and shape !b parameters 
are positive numbers. Figure 3 shows decomposition of 
pA( l) (which is almost the same as pT (l)) into two Weibull 
distribution functions with x0 = 2 and parameters W1:(a1 = 
9.05, b1 = 5.01), and W2:(a2 = 5.41, b2 = 4.98), and ratio of 
W1 Weibull distribution function is 0.70.  

 
 

 
Fig. 3. Fit of ‘A’ content probability distributions to two Weibull 
distributions found in the mer spectrum of the sequence 
NC_001224 fitted to the weighted sum of two Weibull distri 
                                     bution functions 
 
 

For shuffled sequence probability pA(1) is rather well 
approximated by single Weibull distribution function of 
parameters a = 6.85 and b = 4.57 as Fig. 3 shows.  

 
 

 
Fig. 4. Fit of ‘A’ content for shuffled sequence to single Weibull 

distribution 

One can also be interested in distribution of particular 
base among mers, for example in the probability pA(l) that 
there are l A bases in a randomly selected mer of arbitrary 
length. Distribution of particular short bases sequence 
among mers can be found as well as correlation functions 
between position of two (or more) bases within the same 
(or different) mers. The entropy of a primary sequence 
equals 3.13 and is significantly larger than the shuffled one, 
which is 2.71. Sliding window analyses of the mentioned 
as well as other distributions are also possible. 
 
 

V.  EVOLUTIONARY  TREE 
 

In this section, a phylogenetic tree is constructed from 
complete mitochondrial DNA sequences for 13 human 
closest relatives. Mitochondrial DNA in mammals has 
a faster mutation rate than nuclear DNA sequences. The 
faster rate of mutation produces more variance between 
sequences and is an advantage when studying closely related 
species. Usually the control region is used for various 
applications, due to higher overall mutation rate. However, 
local differences in the mutation rate among nucleotide 
positions within control region exist. Therefore, for more 
accurate inference control region sequence data are usually 
supplemented with some coding region data. However, the 
best choice would probably be to rely on a complete 
mitochondrion sequence. The set of 13 mitochondrion 
sequences was downloaded from the GenBank database. 
With the use of a parsing algorithm, mer spectra of all 
sequences were obtained. For example, Homo sapiens 
mitochondrion genome (accession number AF347015.1) 
includes 15 571 bases, its spectrum consists of 2741 mers. 
Then similarity matrix between them was calculated and is 
presented in Table 1. 

The algorithm for the phylogenetic tree that has been 
used is modified Unweighted Pair Group Method Using 
Arithmetic Mean because of its simplicity. It consists of the 
following steps performed on a collection of all sequence 
pairs represented by their similarities. Find the closest (of 
maximal similarity) pair of species. Join leaves to get 
node which becomes the end of branch representing 
hypothetical most recent common ancestor. Similarity 
between any species and the ancestor is assumed to be the 
average of similarities between the species and the two 
descendants. Update collection of species, deleting both 
leaves and replacing them by the branch of hypothetical 
ancestor, and correspondingly similarities between bran-
ches. Continue until there is no sequence left. The result 
is shown in Fig. 5. 
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Table 1. Similarity matrix between 13 selected mitochondrion sequences based on the mer spectra analysis 

     Similarity       
Speciesname Accession # 

1 2 3 4 5 6 7 8 9 10 11 12 13 

H. sapiens (Yoruba) AF347015.1 1.00 0.59 0.58 0.54 0.53 0.54 0.54 0.53 0.52 0.53 0.52 0.51 0.51 

H. sapiens (Cambridge) NC_012920.1  1.00 0.57 0.54 0.54 0.55 0.54 0.53 0.52 0.53 0.52 0.51 0.52 

H. sapiens neanderthal. NC_011137.1   1.00 0.55 0.53 0.54 0.53 0.54 0.52 0.52 0.51 0.52 0.52 

P. troglodytes verus X93335.2    1.00 0.60 0.58 0.54 0.54 0.53 0.51 0.52 0.52 0.52 

P. troglodytes NC_001643.2     1.00 0.56 0.53 0.54 0.51 0.51 0.50 0.51 0.50 

P. paniscus GU189661.1      1.00 0.53 0.54 0.52 0.52 0.52 0.51 0.52 

G. gorillagorilla NC_011120.1       1.00 0.59 0.52 0.53 0.52 0.51 0.51 

G. gorilla NC_001645.1        1.00 0.53 0.53 0.51 0.52 0.50 

P. pygmaeus NC_001646.1         1.00 0.52 0.51 0.51 0.50 

H. lar NC_002082.1          1.00 0.52 0.52 0.52 

M. mulatta NC_005943.1           1.00 0.55 0.52 

M. sylvanus NC_002764.1            1.00 0.52 

P. hamadryas NC_001992.1                         1.00 
 
 

 

Fig. 5. Phylogenetic tree for 13 human closest relatives 
 
 
The number to the right of the node indicates the 

similarity between corresponding branches, while the 
number to the right of the species name is the entropy value 
of the corresponding sequence. Noteworthy is the decreas-
ing entropy when moving up within each clade with one 
exception of H. sapiens neanderthalensis, aswell as the 

decreasing similarity when moving from down right to up 
left of the tree. The tree is in agreement with the last 
updated phylogenetic tree by M. van Oven except for the 
position of H. lar which is grouped with gorillas and 
P. pygmaeus which is grouped with Hominidae instead of 
Homininae according to van Oven’s tree [11].  
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V.  CONCLUSIONS 
 

The main objective of this paper was the presentation of 
substantially new method for symbolic sequence analysis. 
It is relied on efficient and unique decomposition of 
primary sequence into distinct subsequences (spectrum of 
mers). Spectrum makes possible evaluation of various 
distribution functions, long-distance correlation between 
bases and particular bases patterns. Besides, distribution of 
mer lengths is related to the Shannon entropy of the 
primary sequence. Spectrum allows for simple, practical 
measure of global similarity (or distance) between two 
symbolic sequences over the same alphabet.The measure 
proposed does not require any previous sequence alignment 
and works well for sequences of arbitrary length. The 
utility of the measure for phylogenetic tree construction 
based on whole mitochondrial genomes was demonstrated. 
The parsing algorithm and similarity measure work for 
protein sequences as well.  
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