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1. Introduction 

The aim of this report is to compare OCR accuracy of two well known OCR engines: Tesseract 
3.0.1 and FineReader10 Corporate Edition. The comparison is based on Polish historical printed 
documents and ground-truth produced within the scope of the IMPACT project (available at 
http://dl.psnc.pl/activities/projekty/impact/results/). As a rule defined by the IMPACT project the 
document is assumed to be historical if it was printed before 1850. Tesseract and FineReader 
have been selected because both represent high-level solution coming from open-source and 
commercial community and both were the subject of research works in the scope of the 
IMPACT project. The idea of the works described in this report was to verify in practice how 
these two tools can be fine-tuned by the end user in order to improve recognition rate of the 
historical printed text as well as compare the results of OCR accuracy after fine-tuning of both 
tools.  
 
In order to efficiently train Tesseract engine it was needed to enhance part of IMPACT ground-
truth data with regions on a character level. Such a detailed ground-truth data could be then 
used to prepare appropriate training data for Tesseract engine. Training of FineReader was 
done using the built-in mechanism of this OCR engine and did require ground-truth data on a 
region level. For OCR accuracy rate calculation IMPACT ground-truth data on a region level 
was used. The tools used to calculate OCR accuracy were provided by the IMPACT project 
partner – the National Centre of Scientific Research "DEMOKRITOS". 
 
There were several types of experiments performed in the context of OCR training, including 
document level training, whole dataset training and incremental OCR training. All of these 
experiments were done to provide an overall view of the OCR results that can be expected from 
particular OCR engines after particular training efforts. The conclusions include the observations 
related to the recognition accuracy on character and word level in the context of characteristics 
of the pages being OCRed. 
 
The second chapter describes the training process applied to Tesseract and FineReader with 
details and rationale related to particular training approach. The third chapter includes main part 
of this report and is focused on the:  

 Evaluation scenario and criteria that has been used in order to assess the recognition 
quality and further compare both OCR engines. 

 Observations related to OCR recognition accuracy for particular documents processed 
with the use of certain OCR engine. 

 Analysis of the recognition accuracy of the Tesseract and FineReader engines for the 
purpose of comparison. 

 
The last chapter is a summary with conclusions related to the comparison of FineReader and 
Tesseract OCR engines, with the focus on the problems and challenges that certain OCR 
engine should face and improve. 

2. Training process  
In case of Tesseract automated approach to the training process has been selected. The 
training of the Tesseract covered all the necessary steps according to the guidelines of the 



documentation. As a result a complete set of trained data for Tesseract was obtained and 
prepared for download for all interested parties. The trained data is available at 
http://dl.psnc.pl/activities/projekty/impact/results/. The trained data is available both for gothic 
and aniqua documents. It is important to note that these resources are constrained to the data 
selected during the IMPACT project, nevertheless they can be used for further analysis, 
research  and improvements. 
 

In case of FineReader the manual approach was selected. It means that the training process 

was performed using the built-in mechanism in the FineReader Corporate Edition. The training 

was prepared and performed according to the documentation and recommendations of the 

ABBYY company representatives (IMPACT project partner), who suggested to evaluate this 

feature of FineReader only on a document level, as this would guarantee good FineReader 

results. As also stated by the ABBYY, general training, e.g. for whole gothic or antiqua dataset, 

requires ABBYY paid involvement, which means internal training of the FineReader. As this paid 

service of training was not in the scope of the pilot work, this kind of results was not obtained for 

the FineReader. Nevertheless, in case of gothic text ABBYY provided estimated price for 

training FineReader on Polish gothic documents that are the subject of this report. The 

estimated rate could be then compared with efforts needed by PSNC staff to train Tesseract on 

the same set of gothic documents.  

2.1. Tesseract training process 

Tesseract OCR 3.0.1 can be fully trained in order to support non standard languages: character 

sets and glyphs. The training process is described in the training manual1 and can be easily 

scripted to process training automatically (refer to train.sh script for detailed information). 

However, training data needs to be gathered and stored in a strictly specified form. In order to 

use the IMPACT dataset for Polish language containing set of historical images and ground-

truthed corresponding full text content, it requires transformation. The transformation steps are 

described in the subsequent paragraphs. 

 

Training data for Tesseract includes examples of scanned documents along with the full text 

content for these documents. As stated in the documentation, the training data should be as 

much natural as possible in the context of page layout, words spacing and characters 

combinations commonly used in the language. On the other hand, given images shouldn’t 

contain too much noise (e.g. bad quality of scanned images) in order to provide valuable 

training data. 

 

Full text content has to be stored in Tesseracts format called box file. It is made of character 

unicodes and boxes, that is coordinates of rectangles bounding all characters found in the 

scanned page. As a given page should base on a single font, it may be difficult to provide real 

historical documents as different font types are often used within the same page (e.g. italics). 

However, Tesseract allows characters to have a font type modifier attached, and therefore to 

distinguish glyphs of a different font type, but referring to the same character. This approach 

                                                
1
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was used in the antiqua training process, where “$” character was added to indicate italic font 

type in the training data. In case of the training process for gothic texts, antiqua font was 

excluded from the training data because of two reasons. First of all the ratio between number of 

antiqua and  gothic glyphs is low. Secondly, we wanted to test a vanila version of Tesseract with 

only one font trained. 

 

In case of the IMPACT dataset, each page is represented by files that follow a particular naming 

convention. Files related to a single page are identified by a unique number, with a suffix 

depending on the file’s type. File names suffixed by ‘.tif’ contain images of scanned pages 

stored in a lossless TIF format.  Full text content is stored in files complying with the PAGE XML 

format2 (denoted by ‘.xml’ suffix). Finally, documents from the dataset may contain both italic 

and non-italic or fraktur and non-fraktur font shapes (glyphs) in the same sentence, dataset is 

extended by further description. Each page may have a third corresponding file,  a UTF-8 

encoded list of identifiers of text regions that were selected as non-fraktur or italic words. These 

text files have ‘.txt’ suffix. 

 

In the first step glyph’s repository needs to be created, which contains information on glyph 

shapes found in a particular page from the dataset. Information includes bounding coordinates 

of a glyph, unicode character mapping, binarisation threshold as well as font parameters. All this 

allows to generate a denoised form of the original page, e.g. with simplified page layout  or 

excluded font types. To generate a glyph repository one needs to use a Cutter tool. 

 
The following options are required:     --image     --xml  

Usage: pl.psnc.synat.a12.aletheia.Cutter [options] 

 Args:     directory name for output files 

  Options: 

        --font            mark generated glyphs as a {gothic, italic} font 

        --help            print this help 

  *     --image           file name of a image input 

        --only-read-xml   reads only xml file, does not generate anything 

        --tabu            file name of a text file containing list of noise 

                          word's ids 

        --tabu-types      list of TextRegion types to omit during processing 

                          Default: [] 

  *     --xml             file name of a page xml input 

 

This tool requires two files as an input: a page image and a ground truth XML file. In case of the 

IMPACT dataset, images should be transformed to PNG format prior to repository generation 

process. This can be done e.g. by using ImageMagick convert3 tool: 

 

convert 003287.tif 003287.png 

 

Output repository should be stored in a separate directory, hence its name is a mandatory 

parameter of the application. The --font option allows to add font type to characters 
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processed by the application, excluding characters from word regions listed in --tabu file. The 

latest are marked with ‘noise’ font type by default. In order to filter out text regions basing on 

their type, a list of tabu types can be passed by using the --tabu-types parameter. It is used 

for simplifying layout of pages generated in the second step. Available region types are: 

 
paragraph, heading, caption, header, footer, page-number, drop-capital, credit, 

floating, signature-mark, catch-word, marginalia, footnote, footnote-continued, TOC-

entry 

 

For experiments described in this report only paragraph and heading region types were included 

as their font size is comparable and reading order is well defined. The latest parameter --

only-read-xml enables dry run of the application, which allows to check if provided ground 

truth file contains any errors, e.g. referring to wrong characters encoding. Application can be run 

as in the following example: 

 

java pl.psnc.synat.a12.aletheia.Cutter --image 003287.png --xml 

003287.xml --tabu 003287.txt --tabu-types caption --tabu-types header 

--font gothic 003287 

 

which results in a glyphs repository in output directory named 003287/. The cutting process is 

as follows. Process text regions, unless a region’s type was indicated as a tabu type. For each 

text region denoting words in a given ground truth XML file that does not appear on the tabu list, 

glyphs are processed. Each glyph is cropped from the original image basing on its bounding 

coordinates. For each cropped subimage a binarization threshold is sampled basing on the Min 

fuzziness approach implemented in the JAI4 library. Eventually, binarised glyph is stored in a 

PNG file along with its unique identifier, coordinates within the original image, applied 

binarisation threshold, corresponding ground truthed code point and font attributes. 

 

This tool was applied to pages from the IMPACT dataset ground truthed at the glyph level, that 

represent gothic and antiqua Polish historical texts. Processing summary is presented in the 

following table: 

 

Table 1 Processing summary of the Polish historical texts 

Dataset Number of glyph repositories 

Fraktur/Gothic 287 

Antiqua 186 

 

 

In the next step, glyphs repository can be used for generating denoised versions of the original 

images. As repository contains information on font types, one can filter out only required fonts, 

excluding e.g. words written as italic antiqua from the fraktur (gothic) texts. Moreover, as in the 

first step tabu regions could be excluded from the repository, a layout of the generated page can 
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be simpler than in the original image. Page can be generated by Generator CLI (Command Line 

Interface) application: 

 

The following options are required: -w, --width -h, --height  

Usage: pl.psnc.synat.a12.generator.CLI [options] 

Args: <box_dir_path> [ <image_filename> ] 

  Options: 

        --baselines      generate and output baselines offsets to given filename 

    -b, --box            generate and output ".box" data to given filename 

        --em-ratio       set space to em size ratio, used for spaces detection 

        --font-type      output font type in output box file 

  * -h, --height         set height of generated output image 

        --no-image       do not generate output image 

        --overlap        allows letter bounding boxes to overlap (default no 

                         overlaping) 

                         Default: false 

        --skip-gothic    skip gothic letters in output 

        --skip-italics   skip italic letters in output 

        --skip-noise     skip noised letters in output 

    -t, --text           generate and output text to stdio 

    -v, --verbose        turn on verbose mode 

  * -w, --width          set width of generated output image 

 

Application requires four arguments: width and height of the generated image, path to glyphs 

repository and output image filename. In order to generate cleaned form of the original page, 

the first two arguments should match dimensions of the original image. These can be retrieved 

e.g. by a ImageMagick identify command5: 

 

identify -format "-w %w -h %h" 003287.png 

 

As font type filtering is required, one can use one of the --skip-* options. It is possible to 

generate box files related to cleaned images by passing the --box parameter along with 

requested file name, whereas the --font-type switch instructs application to attach encoded 

font type to characters stored in the box file. Eventually, exemplary application call: 

 

java pl.psnc.synat.a12.generator.CLI -w 560 -h 1203 --box 003287-

clean.box --font-type 003287/ 003287-clean.png 

 

reads glyphs repository from 003287 directory and generates both page image 003287.png 

(with given dimension 560x1203) and corresponding box file 003287.box. The latest contains 

font type marks e.g. for italic glyphs.  

 

The generated image is made of binarised glyphs stored in a given glyphs repository. As 

coordinates within the original image are given for each glyph, the original glyph location can be 

easily restored, preserving letters, words and line spacing. Moreover, as glyph repository 

contains binarised images, generated images contain much less noise than the original ones. 
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Please note, that this approach represents local binarisation method and should be more 

effective than methods binarising whole image at once. 

 

Finally, generated data can be provided for the Tesseract training process. This process can be  

automated with the following bash script6 train.sh: 

 
# Path to Tesseract instalation 

TESS_HOME=tesseract-3.01 

FONTNAME=antiqua 

 

# paths with tesseract's binaries and shared data  

TESS_BIN=$TESS_HOME/bin 

TESS_SHARE=$TESS_HOME/share/tessdata 

 

# document specific settings 

LANG=pl 

 

############################################### 

 

NAME=$LANG.$FONTNAME.exp 

TIFNAME=.png 

 

echo "combined 0 0 0 0 1" >font_properties && 

$TESS_BIN/unicharset_extractor *.box && 

for x in `cat files.txt` 

do 

echo "tesseract training $x$TIFNAME" 

       $TESS_BIN/tesseract $x$TIFNAME $NAME$x nobatch box.train.stderr 

done 

cat *.tr >combined.tr 

$TESS_BIN/mftraining -F font_properties -U unicharset -O $FONTNAME.unicharset 

combined.tr &&                

$TESS_BIN/cntraining combined.tr || exit                                                                       

                                                                                                                       

mv pffmtable $FONTNAME.pffmtable                                                                                       

mv normproto $FONTNAME.normproto                                                                                       

mv inttemp $FONTNAME.inttemp 

 

$TESS_BIN/combine_tessdata $FONTNAME.  

# && cp -v $FONTNAME.traineddata $TESS_SHARE/$FONTNAME.traineddata 

 

The transformation process for an exemplary page with id 003287 is summarised in the table 

below: 

 

Table 2 Transformation process for an examplary page with id 003287 

Transformation step Input Output 

convert 003287.tif 003287.png 

pl.psnc.synat.a12.aletheia.Cutter 003287.png 
003287.xml 
003287.txt 

003287/ 

pl.psnc.synat.a12.generator.CLI 003287/ 003287-clean.png 
003287-clean.box 
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train.sh 003287-clean.png 
003287-clean.box 

clean.traineddata 

 

2.2 FineReader training process 

 
FineReader 10 Corporate Edition allows training text recognition manually only on the document 
level. Only characters included in the alphabet of the recognition language can be used to train 
FineReader. Trained characters are stored in the user pattern which together with recognition 
language and other options can be saved into the file for later use. However, pattern can only 
be used for documents that have the same font, font size, and resolution as the document used 
to create the pattern. 
 
Considering the above rules and limitations, the process of training FineReader began with 
creating OCR language. That language was based on the Polish language available in 
FineReader and was extended with the characters used in the training dataset. These contained 
mainly characters that cannot be entered from the keyboard, especially ligatures, old characters 
such as long s, and accented characters such as a with acute above. Two separate languages 
were created to support gothic and antiqua documents. 
 
Once the recognition language was ready the pattern training could be started. The training 

process was performed on a cleaned black and white images. Training results were used for 

testing two data sets - cleaned black and white images and real scans without any changes. 

 

For each training set the user pattern was created before training the first page had started. The 

user pattern name consisted of the associated training set name and the number of trained 

pages. 

 



 
Figure 1 Pattern editor of the FineReader 10 CE OCR engine 

 

While training, FineReader shows the unrecognized character bounded with the green frame. 

When the boundaries were detected incorrectly the frame size was manually adjusted to the 

character being recognized. If necessary, the character was entered from the keyboard or 

selected from the recognition language character set. 

 

 
Figure 2 Training process of the FineReader 10 CE OCR engine 



If the quality of the character being recognized was poor it was skipped on purpose. The reason 
for that was not to perturb the pattern with images showing part of a character similar to the 
other real character. 
 
After training each page the pattern and the settings were saved to a file. Next the user pattern 
was renamed to include the following page. The above actions had been performed until all 
pages in the training set were trained. 
 
The training approach used in the comparison is quite narrow and has several limitations 
described in the beginning of this section. Additionally it is very time-consuming. Unfortunately 
training FineReader on a broader scale requires purchasing an expensive service that exceeds 
the funds and scope of this pilot work. 
 
During training several problems were encountered. The first problem was associated with the 
frame bounding the character being recognized. Sometimes it happened that the frame was not 
placed in the beginning of the character. The only way to adjust the frame size was to make it 
wider but the position of the left edge could not be changed. In that case the part of the 
character was skipped. 
 
Another problem was with italic characters. Sometimes the character (especially “ſ” – long s) 
overlapped the character next to it. In that case the right edge of the bounding frame was placed 
in a way to avoid overlapping. This meant that only part of the character was within the frame 
but since all other cases were similar the recognized character could be stored in the pattern. 

3. Comparison of Tesseract and FineReader 

3.1 Evaluation scenario 

In order to compare Tesseract and FineReader OCR engines, the evaluation scenario is based 

on the hold-out test and train approach, where dataset is randomly split into two disjoint 

subsets. First one is used only for the training purpose in order to create customised OCR 

engine and is referred to as training set. Later on, a customised OCR engine is applied to the 

second subset, a testing set. This results in full text content, of which quality is verified with the 

ground truth. The initial set of pages was divided into separate datasets, each referring to a 

single document, therefore enabling training process of FineReader (please refer to Section 2.2 

for more details). Moreover, in case of Tesseract it was also possible to perform evaluation on a 

broader set of pages from several documents, hence additional ‘all’ dataset was created as well. 

The two following tables present number of pages used in datasets for training and testing for 

fraktur and antiqua fonts respectively. 

 
Table 3 Number of pages used in datasets for training and testing for fraktur based documents. 

Dataset name Number of training pages Number of test pages 

test-14 4 14 

test-16 5 17 

test-19 4 14 

test-21 4 15 

test-22 9 41 



test-3  6 22 

test-all 59 228 

 
Table 4 Number of pages used in datasets for training and testing for antiqua based documents. 

Dataset name Number of training pages Number of test pages 

test-na 28 108 

test-oe 5 10 

test-zr 7 28 

test-all 38 148 

 
 
The testing phase was conducted in two variants: cleaned test and real data test. In the first 

case test pages were transformed to so called cleaned versions. This was done in the same 

manner as for Tesseract training described in Section 2.1. The second case concerns original 

page scans containing much more noise. There are few reasons why such an approach was 

proposed. As this evaluation refers to characters and words recognition quality, it shouldn’t be 

biased by additional factors like noise and complicated layout. Moreover, in many cases it may 

be difficult to evaluate OCR results against the ground truth, as reading order may be disturbed 

or not well defined, thereby decreasing the observed recognition quality. Finally, as both sets, 

cleaned and real data, refer to the same pages, it is possible to compare a recognition quality 

between cleaned and real life data, and hence observe how it decreases when layout gets more 

complicated and noise appears. 

 

3.1.1 Ground truth preprocessing 

 

In order to compare OCR engine output and expected ground truth, the latest had to be 
transformed into comparable form of a plain text file. This was achieved by XmlToTxt CLI tool: 
 

The following options are required:     --xml  

Usage: pl.psnc.synat.a12.aletheia.XmlToTxt [options] 

  Options: 

        --help         print this help 

        --tabu         file name of a text file containing list of noise word's 

                       ids 

        --tabu-types   list of TextRegion types to omit during processing 

                       Default: [] 

  *     --xml          file name of a page xml input  
 
that reads given XML file and outputs plain text to the application’s standard output. With tabu 
and tabu-types switches, one can filter out noise words and text regions by passing their id or 
type respectively. Please refer to Section 2.1 for more details regarding ground truth and text 
filtering. 
 
Conversion tool was used for two groups of test pages. In case of cleaned pages, filtering 
options were set conforming to the cleaning process. In case of real pages, no filtering was 
applied. 
 
Generated plain text is ordered according to reading order defined in the ground truth. However, 
IMPACT ground truth does not define complete order for all text regions (e.g. for page numbers 



or marginalia). In such cases, XmlToTxt tool generates text according to internally defined rules. 
The text regions ordering issue is important as the verification step compares OCR engine 
output and ground truth basing on the plain text. As both OCR engines and ground truth 
transforming tool may differently align parallel text regions, the overall recognition quality score 
is biased. This issue was eliminated in case of cleaned pages dataset, that contain simplified 
layout and hence well defined reading order, but appears in case of the real pages dataset. 
 
During ground truth XML files preprocessing few problems were encountered. 
 

1. Characters encodings used in texts differ on different levels of ground truth. For example 
on glyphs level, character is encoded using combining macron, whereas on the level of 
words, the same character is encoded as a single unicode point. Moreover, in some 
situations, the same glyph is represented by different characters on different levels. In 
such cases the ground truth data was manually corrected and single unicode point was 
used. 

2. XmlToTxt tool provides an option to exclude words from processed text basing on a 
provided list of word’s identifiers. This requires that data is iterated on the words level, 
but there is no word order defined in the PAGE XML file. Currently, words are processed 
according to text equivalent from the text line level. However, this cannot be fully 
automated as the same word may appear more than once in a single text line, or even 
may not be found due to different characters encoding or replacements (compare with a 
previous issue). In such cases, manual correction must be involved. 

3.1.2 Evaluation criteria 

The evaluation process was performed using the IMPACT developed tools and resources. The 
National Centre of Scientific Research "DEMOKRITOS" (NCSR) has provided a set of tools for 
OCR evaluation. The criteria of the evaluation of these tools were described in details in one of 
the IMPACT project deliverables: D-OC3.1 EVALUATION METRICS AND SCENARIOS. 
 

In scope of this report the investigated criteria was OCR accuracy both on character and word 

level. The calculation of the OCR accuracy was performed using the evaluation tools provided 

by the NCSR IMPACT project partner. The following command has been executed for each of 

the file under evaluation tests: 
 

OCREval.exe a - IN_GT_FILE IN_OCR_RES OUT_CHAR_RES OUT_WORD_RES OUT_RES_SUMMARY, where 

 IN_GT_FILE - input file - ground truth file 
IN_OCR_RES - input file - results file produced by evaluated OCR engine 

OUT_CHAR_RES - output file - results on a character level (txt file) 

OUT_WORD_RES - output file - results on a word level (txt file) 

OUT_RES_SUMMARY - output file - xml results file of OCR evaluation 

 

The results of the evaluation on particular page level has been summarised in order to obtain 

the overall OCR accuracy on particular experiment level (e.g. for particular document where 

multiple pages has been evaluated). The overall accuracy for particular experiment was an 

effect of the following equation: 



 
where n is the number of evaluated files, ci is the number of correctly recognised 

characters/words in particular page and ai is the number of all characters/words in particular 

page.  

3.2. OCR recognition accuracy results 

 

OCR results for FineReader are presented on Table 5, OCR results for Tesseract are presented 

on Table 6. Both tables have the same structure. Each row in the table represents one 

experiment performed on particular dataset (e.g. document) level using particular OCR engine 

trained with a defined number of pages. The table is composed of the following columns: 

● Document - document that was the subject of the training and OCR, it refers to the 
dataset name mentioned in section 3.1. 

● Type of document - the type of font used in the document. There are two possible 
values: “gothic” - for gothic (fraktur) documents and “antiqua” for antiqua documents.  

● Number of trained pages - number of pages from the document that were used to train 
OCR engine. If the number is equal to 0 it means that no training was performed. 

● Character level OCR accuracy - accuracy of the OCR engine recognition on a character 

level, calculated as follows:  

 
where e is the number of character errors (total for insertions, substitutions and 
deletions), and c is the number of all characters in the document. 

The character level OCR accuracy is divided into two sub-columns: “cleaned” for 
preprocessed pages and “original” for original pages. Please refer to the section 3.1 for 
details on distinction between “cleaned” and “original”. 

● Word level OCR accuracy - accuracy of the OCR engine recognition on a word level, 
calculated as follows:  

 
where e is the number of word errors, and w is the number of all words in the 
document. 

The word level OCR accuracy is divided into two sub-columns: “cleaned” for 
preprocessed pages and “original” for original pages. Please refer to the section 3.1 for 
details on distinction between “cleaned” and “original”. 

 
The FineReader and Tesseract results were generated in an incremental manner. It means that 
during the training the OCR process was executed after each trained page. As a result for each 
dataset that was processed it was possible to obtain several OCR results which correspond to 



particular number of trained pages. This experiment has been performed to get an overview on 
how the increase of the training data influences the recognition rate of the OCR engine.  
 
Table 5. OCR recognition accuracy results – FineReader  

Document Type of 
document 

Number of 
trained pages 

Character level OCR accuracy Word level OCR accuracy 

original cleaned original cleaned 

test-na antiqua 0 81,72% 81,73% 57,98% 55,85% 

test-na antiqua 1 81,63% 83,16% 57,80% 58,27% 

test-na antiqua 15 82,89% 86,59% 60,35% 64,83% 

test-na antiqua 22 83,15% 86,63% 60,69% 64,84% 

test-na antiqua 28 83,08% 86,97% 60,42% 65,43% 

test-oe antiqua 0 61,95% 79,63% 42,46% 52,67% 

test-oe antiqua 1 68,05% 88,01% 53,89% 66,74% 

test-oe antiqua 2 68,82% 88,86% 55,26% 68,64% 

test-oe antiqua 3 69,18% 89,14% 55,54% 68,81% 

test-oe antiqua 4 69,57% 89,47% 56,28% 69,26% 

test-oe antiqua 5 69,40% 89,69% 55,83% 69,92% 

test-zr antiqua 0 75,65% 85,91% 67,11% 66,91% 

test-zr antiqua 1 78,91% 89,07% 74,01% 73,46% 

test-zr antiqua 2 79,00% 89,52% 74,30% 74,49% 

test-zr antiqua 3 79,30% 89,86% 74,99% 75,45% 

test-zr antiqua 4 79,68% 90,13% 76,17% 76,23% 

test-zr antiqua 5 79,90% 90,32% 76,41% 76,70% 

test-zr antiqua 6 79,97% 90,46% 76,53% 77,07% 

test-zr antiqua 7 80,15% 90,90% 77,31% 78,05% 

test-14 gothic 0 47,86% 48,79% 14,63% 15,50% 

test-14 gothic 4 82,37% 84,96% 54,54% 58,22% 

test-16 gothic 0 48,04% 48,93% 14,21% 14,77% 

test-16 gothic 5 73,25% 81,86% 40,11% 51,74% 

test-19 gothic 0 43,26% 38,77% 11,50% 9,58% 

test-19 gothic 1 52,07% 47,91% 19,12% 17,85% 

test-19 gothic 2 52,65% 50,90% 21,01% 21,64% 

test-19 gothic 3 52,90% 73,96% 20,82% 37,20% 

test-19 gothic 4 52,79% 73,98% 20,74% 36,99% 

test-21 gothic 0 51,78% 52,84% 12,70% 13,05% 

test-21 gothic 1 78,22% 81,26% 41,96% 45,50% 

test-21 gothic 2 79,59% 82,78% 44,71% 47,84% 

test-21 gothic 3 80,11% 83,31% 43,80% 48,98% 

test-21 gothic 4 80,48% 83,78% 44,42% 49,99% 

test-22 gothic 0 49,85% 54,15% 17,89% 19,56% 



test-22 gothic 1 59,94% 62,40% 28,84% 31,73% 

test-22 gothic 2 62,16% 64,79% 30,56% 33,88% 

test-22 gothic 3 62,51% 65,02% 31,48% 34,26% 

test-22 gothic 4 74,87% 79,23% 48,90% 55,98% 

test-22 gothic 5 74,61% 79,17% 48,61% 55,79% 

test-22 gothic 6 77,28% 81,41% 52,82% 59,65% 

test-22 gothic 7 78,18% 82,03% 54,47% 61,10% 

test-22 gothic 8 79,32% 82,26% 57,11% 61,74% 

test-22 gothic 9 79,23% 82,51% 56,86% 62,15% 

test-3 gothic 0 53,91% 54,77% 16,45% 17,16% 

test-3 gothic 1 78,77% 79,87% 46,70% 48,20% 

test-3 gothic 2 81,77% 82,71% 51,21% 53,11% 

test-3 gothic 3 82,87% 83,68% 53,30% 55,01% 

test-3 gothic 4 83,34% 84,41% 53,57% 56,08% 

test-3 gothic 5 83,70% 85,10% 54,31% 57,40% 

test-3 gothic 6 84,01% 85,11% 54,95% 57,17% 

 
The results for FineReader are depicted on four charts below. Each chart has on its Y axis the 
recognition rate expressed in %. X axis represents the number of trained pages. Chart 1 and 
chart 2 represent results for the antiqua documents and chart 3 and chart 4 for the gothic 
documents. All these charts represent tests performed on original types of pages. 
 
 
Chart 1. Character level OCR accuracy in the context of the training data size (antiqua documents) 
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Chart 2. Word level OCR accuracy in the context of the training data size (antiqua documents) 

 
Chart 3. Character level OCR accuracy in the context of the training data size (gothic documents) 

 
Chart 4. Word level OCR accuracy in the context of the training data size (gothic documents) 

 

 



In general all the results indicate that with the increase of the training data the OCR results are 
getting better. Results for particular documents show that after the second trained page the 
OCR results increases considerably. Additional pages increase the results on a smaller scale, 
and can even slightly decrease the recognition rate. The decrease is probably an effect of noise 
introduction (too many representations of particular character). The recognition rate for the 
antiqua documents is approx. 80% on character level and more than 60% on word level. 
Although the results are not very good it proves that with the use of small number of training 
data the OCR results can be considerably improved and used at least for the purposes of 
search. The “test-oe” has given very bad results due to the bad quality images and physical 
degradation of the original document. On the other hand “test-zr” has given a very good results, 
because after only two pages being trained it was possible to reach almost 80% of character 
recognition and over 70% of word recognition rate.  
 
Although the recognition rate for the antiqua documents has been considerably increased after 

the training process, the recognition rate of the gothic documents has been improved even 

more. The initial recognition rate (no training) of the gothic documents oscillates around 40-50% 

for the character level and 10-20% for the word level. After the training process the recognition 

rate has been dramatically improved and reaches 80% for the character level and 60% for the 

word level recognition in the best case scenarios. 

 

Table 6. OCR recognition accuracy results – Tesseract 

Documen
t 

Type of 
document 

Number of 
trained pages 

Character level OCR 
accuracy 

Word level OCR accuracy 

original cleaned original cleaned 

test-all antiqua 38 49,23% 76,06% 29,77% 43,10% 

test-na antiqua 1 72,01% 83,56% 44,99% 57,42% 

test-na antiqua 15 62,92% 80,94% 35,90% 47,07% 

test-na antiqua 22 64,69% 81,91% 39,52% 51,51% 

test-na antiqua 28 69,39% 84,82% 42,52% 55,00% 

test-oe antiqua 1 37,09% 72,41% 39,61% 57,40% 

test-oe antiqua 2 40,24% 74,35% 42,29% 60,64% 

test-oe antiqua 3 38,66% 74,86% 40,21% 61,19% 

test-oe antiqua 4 36,36% 74,39% 39,38% 59,82% 

test-oe antiqua 5 75,21% 86,52% 61,19% 70,28% 

test-zr antiqua 1 47,77% 82,31% 52,93% 61,09% 

test-zr antiqua 2 50,20% 83,82% 56,62% 64,69% 

test-zr antiqua 3 48,74% 84,46% 56,87% 63,96% 

test-zr antiqua 4 48,96% 85,23% 60,16% 68,33% 

test-zr antiqua 5 46,86% 82,27% 51,63% 58,92% 

test-zr antiqua 6 47,78% 80,94% 56,52% 64,85% 

test-zr antiqua 7 39,38% 78,32% 52,72% 60,67% 

test-14 gothic 4 70,62% 85,95% 49,88% 59,78% 

test-16 gothic 5 66,65% 87,26% 42,19% 60,22% 



test-19 gothic 1 62,73% 73,13% 34,66% 36,68% 

test-19 gothic 2 65,72% 75,59% 37,45% 40,11% 

test-19 gothic 3 70,26% 79,87% 40,13% 44,46% 

test-19 gothic 4 71,00% 80,65% 41,17% 45,63% 

test-21 gothic 1 84,27% 92,08% 59,44% 67,83% 

test-21 gothic 2 84,92% 92,22% 57,98% 65,99% 

test-21 gothic 3 81,80% 89,33% 53,91% 61,06% 

test-21 gothic 4 83,91% 91,71% 59,01% 66,00% 

test-22 gothic 1 34,99% 55,53% 12,19% 19,67% 

test-22 gothic 2 59,59% 77,97% 32,34% 49,78% 

test-22 gothic 3 63,28% 80,75% 40,58% 58,27% 

test-22 gothic 4 64,76% 81,50% 43,20% 60,04% 

test-22 gothic 5 63,23% 80,15% 37,28% 51,86% 

test-22 gothic 6 64,99% 82,35% 44,54% 63,10% 

test-22 gothic 7 60,26% 78,71% 37,35% 53,92% 

test-22 gothic 8 57,28% 77,88% 33,99% 51,83% 

test-22 gothic 9 60,17% 86,94% 39,01% 63,24% 

test-3 gothic 1 79,43% 86,62% 53,67% 59,12% 

test-3 gothic 2 79,76% 86,80% 54,40% 59,57% 

test-3 gothic 3 77,55% 84,46% 45,17% 49,84% 

test-3 gothic 4 77,09% 84,21% 48,52% 53,53% 

test-3 gothic 5 77,86% 85,68% 50,78% 57,42% 

test-3 gothic 6 77,30% 86,13% 50,24% 57,54% 

test-all gothic 59 54,27% 72,43% 30,77% 39,24% 

 
Tesseract results have been calculated not only on particular document level, but also on a level 
of all documents of particular type. It means that during the test phase it was possible to obtain 
the results for the overall recognition rate on antiqua documents and gothic documents 
separately. The results (test-all for gothic and antiqua) indicate that the overall training process 
for Tesseract OCR engine has not been successful. The recognition rate of approx. 50% on 
character level and approx. 30% on word level cannot be considered as valuable resource. The 
reason is most probably related to the various document layout, font type and noise. These 
characteristics highly influence the Tesseract recognition rate which results in poor quality 
output.  
 
On the other hand the recognition rate on particular document level is promising, as it oscillates 
around 70% on character level and 50% on word level. As mentioned before, the crucial 
element which highly decreases the recognition rate is poor layout analysis and noise reduction 
of the Tesseract engine. 
 
Incremental training results for Tesseract are depicted on four charts below. Each chart has on 
its Y axis the recognition rate expressed in %. X axis represents the number of trained pages. 
Chart 5 and chart 6 represent results for the antiqua documents and chart 7 and chart 8 for the 
gothic documents. All these charts represent tests performed on original types of pages. 



 
Chart 5. Character level OCR accuracy in the context of the training data size (antiqua documents) 

 
Chart 6. Word level OCR accuracy in the context of the training data size (antiqua documents) 

 
Chart 7. Character level OCR accuracy in the context of the training data size (gothic documents) 

 
 



Chart 8. Word level OCR accuracy in the context of the training data size (gothic documents) 

 

 
The incremental results for Tesseract show, that although usually the subsequent trained pages 
increase the accuracy, they can also introduce noise. In most cases after approximately 3rd 
trained page the accuracy decreases (noise introduction). Then the remaining pages increase 
the accuracy, but the accuracy does not get much better than after 2nd trained page or can even 
remain worse. This is most probably due to the poor Tesseract noise handling and layout 
analysis. With the growth of training patterns Tesseract starts to recognise noise as false 
positives characters. So with more different patterns coming from more pages, Tesseract 
recognises more false positives and reduces the accuracy (e.g. in case of test-zr). 

3.3 Comparison of Tesseract and FineReader recognition accuracy  

 
In order to compare the Tesseract and FineReader OCR engines several tests has been 

performed. All these tests has been individually analysed in the scope of particular OCR engine. 

The results of particular tests with all the details related to these results has been described in 

section 3.2. For the purposes of the comparison the overall results on particular document level 

has been presented on table 7. Each row in the table represents one experiment performed on 

particular document level using both FineReader and Tesseract OCR engines, trained with the 

same pages. The table is composed of the following columns: 

● Document - document that was the subject of the training and OCR, it refers to the 
dataset name mentioned in section 3.1. 

● Type of document - the type of font used in the document. There are two possible 
values: “gothic” - for gothic (fraktur) documents and “antiqua” for antiqua documents.  

● Type of pages - the type of pages that were OCRed. Two options are possible: “cleaned” 
and “original”. Please refer to the section 3.1 for details on distinction between these two 
possible values. 

● Number of trained pages - number of pages from the document that were used to train 
OCR engines. 

● Character level OCR accuracy - accuracy of the OCR engine recognition on a character 

level, calculated as follows:  



 
where e is the number of character errors (total for insertions, substitutions and 
deletions), and c is the number of all characters in the document. 

The character level OCR accuracy is divided into two sub-columns: FineReader for 
recognition rate of FineReader OCR engine and Tesseract for recognition rate of 
Tesseract OCR engine. 

● Word level OCR accuracy - accuracy of the OCR engine recognition on a word level, 
calculated as follows:  

 
where e is the number of word errors, and w is the number of all words in the 
document. 

The word level OCR accuracy is divided into two sub-columns: FineReader for 
recognition rate of FineReader OCR engine and Tesseract for recognition rate of 
Tesseract OCR engine. 
 
 

 
Table 7 Comparison of OCR accuracy results: FineReader vs Tesseract 

Document Type of 
document 

Type of 
pages 

Number 
of trained 
pages 

Character level OCR 
accuracy 

Word level OCR 
accuracy 

FineReader Tesseract FineReader Tesseract 

test-na antiqua cleaned 28 86,97139 84,81774 65,43104 54,99568 

test-na antiqua original 28 83,08036 69,38797 60,420418 42,524837 

test-oe antiqua cleaned 5 89,68817 86,52127 69,91817 70,27824 

test-oe antiqua original 5 69,399185 75,21368 55,82787 61,185528 

test-zr antiqua cleaned 7 90,89958 78,31711 78,05078 60,667484 

test-zr antiqua original 7 80,146996 39,377434 77,30597 52,722473 

test-14 gothic cleaned 4 84,95764 85,94833 58,21762 59,782887 

test-14 gothic original 4 82,3733 70,61988 54,54097 49,876606 

test-16 gothic cleaned 5 81,85919 87,26151 51,738323 60,224297 

test-16 gothic original 5 73,24994 66,64795 40,109287 42,185795 

test-19 gothic cleaned 4 73,9826 80,645386 36,985195 45,625843 

test-19 gothic original 4 52,791237 70,99617 20,743692 41,16866 

test-21 gothic cleaned 4 83,78464 91,71215 49,986412 65,99619 

test-21 gothic original 4 80,47636 83,9082 44,417477 59,00755 

test-22 gothic cleaned 9 82,50946 86,93861 62,151653 63,23807 

test-22 gothic original 9 79,22829 60,16857 56,864452 39,0144 

test-3 gothic cleaned 6 85,106636 86,12579 57,17473 57,535183 

test-3 gothic original 6 84,005486 77,30411 54,95192 50,24464 

 



In general in case of gothic type documents Tesseract provides more accurate results both in 
terms of character and word level accuracy and both in case of “cleaned” and “original” types of 
pages, but the advantage is more visible in case of “cleaned” pages tests. Particular tests and 
comparison of the FineReader and Tesseract OCR results give an initial insight into the 
common problems and challenges that should be considered in future works related to both 
tools. The following conclusions have been derived during the analysis of the results for 
particular tests: 

 test-na: FineReader is more accurate on characters level than Tesseract in case of both 
cleaned data and real data. 

 test-oe: FineReader is slightly more accurate on characters level than Tesseract in case 
of cleaned data, whereas Tesseracts wins in the real data test case. This dataset 
contains images of a good quality, with a high contrast between glyphs and background. 

 test-zr: FineReader is more accurate on characters level than Tesseract in case of 
cleaned data, and definitely more accurate in case of real data, when Tesseract didn’t 
correctly recognise page boundaries, generating a lot of false positive characters. 

 test-14: Tesseract engine has serious problems with the layout analysis and therefore 
the OCR results for the original type of pages is worse than FineReader. 

 test-16: Similarly to the test-14 Tesseract gave worst results in case of original pages. 
The reason in this case was mainly the noise on the scans, which was usually 
interpreted by Tesseract as additional characters, resulting in “addition” type of errors.  

 test-19: FineReader gives very bad results – approx. 45% on character level – for pages 
with greater amount of characters (small characters, approx. 2500 characters per page), 
it gives much better results for pages with less characters (larger characters, approx. 
1600 characters per page) – the accuracy for such cases is approx. 76% on character 
level. It is important to note that the engine was trained to recognise both small 
characters and larger ones. 

 test-21: Good quality images give the Tesseract considerable advantage over the 
FineReader. The Tesseract is better both in the “cleaned” and “original” test. 

 test-22: The complicated layout (e.g. mariginalia) and visible noise causes Tesseract to 
loose in the “original” test. 

 test-3: Similarly to the test-22 the complicated layout (e.g. mariginalia) and visible noise 
causes Tesseract to loose in the “original” test. 

 
Finally, the facts related to the efforts needed to train particular OCR engine are described in 
this paragraph. This cannot be considered as a direct difference or comparison on the financial 
requirements related to training particular engine, nevertheless it can give an impression on how 
certain approaches involve available personnel and what are the approximate estimates for 
getting usable OCR results, both for Tesseract and FineReader. In case of Tesseract PSNC 
staff (IT specialists) needed approximately 15 working days to prepare all the necessary tools 
required for Tesseract training. It is important to note that the tools can be further used for any 
number of training experiments. Additional 8 days were required to train Tesseract in scope of 
the datasets investigated in this pilot work with the use of the developed tools. In case of 
FineReader it was required approximately 25 working days to train it both on gothic and antiqua 
documents. FineReader training did not include the test-all cases for gothic and antiqua tests. 
Assuming that the tools developed for Tesseract are available, the staff required to train 
Tesseract and FineReader is similar. It means that it is required to have a person familiarised 
with appropriate software tools (developed by PSNC for Tesseract or FineReader itself) and 
educated in the context of the documents being processed, e.g. for historical documents a 
specialist is required in order to identify all the characters available on the scanned pages. 
Moreover the Tesseract training required ground truth data while FineReader did not. This is 



because the of the training approach: automatic for Tesseract and manual for FineReader. It is 
also clearly visible in terms of the efforts needed to train certain OCR engine: 8 days for 
Tesseract and 25 days for FineReader. In order to obtain ground truth data for Tesseract 
(beside the test-all cases) it was required to invest approximately 700 EUR (subcontract). 
Although the Tesseract training related to whole antiqua and gothic test did not give satisfactory 
results, it can be interesting to mention that ABBYY has offered to train FineReader on Polish 
gothic documents for the price between 31 700$ and 45 000$, but no estimates on the resulting 
accuracy could be given (the estimate given in February 2012). It shows that the effort needed 
to train OCR engine for a general dataset, including various types of documents is probably 
time-consuming task and requires considerable effort.  

4 Conclusions 
 

When comparing results of both engines in test, there is no single winner that would outperform 

the second engine in all test cases. However, we try to point out differences between 

FineReader and Tesseract engines. 

 

First of all, Tesseract seems to deal better than FineReader in case of gothic tests in their 

cleaned form, where most of glyphs are of a fraktur font. This may be caused by the fact that 

Tesseract’s training included only fraktur glyphs, whereas FineReader contains an embedded 

set of modern glyphs patterns and hence the glyph’s classification is more error prone. 

Moreover, Tesseract does not handle complicated or noised page layout well. For example in 

case when page boundaries are represented by irregular shapes, dots and lines rather than 

solid areas, Tesseracts generates much false positive characters decreasing the results 

precision and hence accuracy value. This can be clearly observed by test-zr original antiqua test 

case where character level accuracy is 39.4%. In case of incremental training the observation 

shows that Tesseract’s recognition accuracy can be decreased by the introduction of noise (in 

case of most tests 3rd page decreased the accuracy). 

 

In case of FineReader it was usually enough to train two pages to get considerably better 

results, further training increases OCR results on a smaller but important scale. FineReader had 

difficulties with a test case where two kind of pages were OCRed: pages with large font (approx. 

1600 characters per page) and with small font (approx. 2500 characters per page). The overall 

results were very bad, due to the fact that the pages with small font gave very bad results (45% 

on character level), despite the fact that pages with large font gave relatively good results (76% 

on character level). 

 

Overall tests for gothic and antiqua documents for Tesseract give poor results, due to various 

types of documents and their fonts, layouts and evident noise appearing on the scanned pages. 

However, it can be observed that for good quality pages Tesseract gives considerably better 

results than FineReader. 

 

The overall effort needed to train Tesseract and FineReader was different in nature, as the 

Tesseract approach was automatic and FineReader was manual. The testing activities required 



more effort in case of FineReader, but in order to be able to train Tesseract it was required 

prepare additional ground-truth data for the pages used in training (e.g. by using the Cutouts 

tool or subcontracting the work).  


